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The scattering amplitude of an interaction may be used to determine its cross-section and
thereby the probability of its occurrence in a particle collider. Thus, a reliable computation
of the scattering amplitude may easily be compared to experiment, thereby providing a
useful tool for evaluating the successes and failures of the Standard Model. Ultimately
this implies that highly accurate computation of scattering amplitudes could be particularly
crucial in developing a more fundamental theory of particle physics. Scattering amplitudes,
however, can be computationally expensive to calculate, especially for greater multiplicities
and at higher orders. This is a result of multiple redundancies present in the theory, which
may be removed by a number of techniques that have been developed for this purpose. In
this paper, an outline of some of these techniques is given and examples are provided so as
to demonstrate their efficacy.
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D T Dobrowolski From Spinors to Twistors

1. INTRODUCTION

A. Quantum Chromodynamics

In quantum field theories, scattering amplitudes are traditionally calculated from a set of Feyn-
man rules which themselves may be extracted from the Lagrangian. This paper concentrates
on the interactions between gluons which may occur in the deep inelastic scattering of hadrons,
present in colliders such as the LHC and the RHIC. The entire Standard Model Lagrangian
therefore need not be considered, and only the part of it that describes the strong interaction
(otherwise known as the colour interaction) between quarks and gluons is relevant to this paper.
This part of the Lagrangian is known as the quantum chromodynamics (QCD) sector and is
given by the expression,

LQCD =
∑

k={u,d,c,s,t,b}

q̄k(i /D −mk)qk −
1

4
Ga
µνG

a,µν , (1)

where the gauge covariant derivative, Dµ is given by,

Dµ ≡ ∂µ + igsT
aAaµ, (2)

and the gluon field strength tensor, Gµν
a is given by,

Gµν
a ≡ ∂µAaν − ∂νAaµ + gfabcAbµAcν . (3)

The sum in the original expression is over the six species of quark, the fields and masses for
which are represented by qk and mk respectively. gs is the strong coupling constant. T a are the
Gell-Mann matrices representing the colour symmetry SU(3) group, Aaµ(x) the gluon gauge
fields and fabc the structure constants of SU(3), where the a, b, c indices refer to the eight
independent colour states of gluons.

The reason that this Lagrangian was derived to predict the relevant experimental results and
continues to do so with great success, stems from certain observed symmetries. The complete
derivation of the Lagrangian will not be described in this paper, however a good starting point
for the inquisitive reader can be found in Peskin and Schroeder’s book entitled ’An Introduction
to Quantum Field Theory’ [1] or alternatively in ’Quantum Chromodynamics’ by Greiner,
Schramm and Stein [2]. The derivation of the Feynman rules from the QCD Lagrangian is also
omitted, in favour of stating the relevant colour-ordered rules for gluon interactions ipse dixit,

p

q

k
ν

ρ

µ =
i√
2

(ηνρ(p− q)µ + ηρµ(q − k)ν + ηµν(k − p)ρ)

µ

λ

ρ

ν

= iηνρηνλ −
i

2
(ηµνηρλ + ηµληνρ)

µ ν = i
ηµν
p2
,

, (4)
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FIG. 1: The number of graphs appearing in tree-level n-gluon scattering using different approaches.
The number of terms in BCFW are chosen for the most complicated alternating helicity case. [3]

where ηµν is the metric tensor1 and p, q and k depict 4-momenta, i.e. vectors in Minkowski
space.2 The meaning and significance of colour-ordering shall be explained in Section 2B.

To apply the rules, it is necessary only to perform the product of each rule corresponding to each
vertex or internal propagator within the Feynman diagram of the relevant process. It is important
also to impose total momentum conservation at each vertex and to include polarisation vectors
for each external gluon leg, the form of which shall be detailed in Section 2A.

B. Outline of Redundancies

It is apparent from Figure 1 that, when calculating scattering amplitudes using QCD (or indeed
any quantum field theory) via the Feynman rules an extraordinary number of diagrams must be
considered for even quite modest numbers of external gluons at tree-level. For example, ampli-
tudes involving ten external gluons require the summation of over ten million diagrams and yet,
a special type of amplitude known as an MHV (Maximally-Helicity-Violating) amplitude need
consider only one.3 The reason for such an incongruous surplus of diagrams comes from the
fact that many are related by gauge invariance and are therefore not required to be computed
individually. Such redundancy arises both from the SU(3) colour symmetry of QCD as well
as from the admission of off-shell quantities which are unphysical and therefore must cancel
when the final, gauge-invariant scattering amplitude is computed. Thus, finding a way to pro-
cedurally compute amplitudes in terms of on-shell contributions is most beneficial to reducing
the arduousness of scattering amplitude computation.

In the forthcoming section, the Weyl spinor formalism will be introduced, in which quarks are
approximated to be massless. This trivialises the on-shell condition,

p2 = m2, (5)

1 In this paper the mostly-plus convention is used: ηµν = diag(−1,+1,+1,+1).
2 Minkowski space is the space formed by combining 3D Euclidean space and time into a 4D manifold so as

to preserve the spacetime interval between any two events upon a change of inertial frame. The contravariant
four-momentum of a particle with relativistic energy E and three-momentum p = (px, py, pz) is given by the
expression, p = (Ec , px, py, pz) where c is the speed of light.

3 MHV amplitudes are amplitudes for which n − 2 of the n external gluons share the same helicity. NMHV
amplitudes are those for which n − 3 share the same helicity and so on. Helicity is the projection of the spin-
operator onto the direction of motion of a particle [4].
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where p2 is equal to the square of the four-momentum of the particle pµpµ and m is equal to its
mass. Thus, the on-shell condition becomes,

p2 = 0. (6)

The formalism also allows amplitudes to be expressed in a manifestly Lorentz-invariant fashion.
This results from the Lorentz-covariance of the Dirac Lagrangian. It is then possible to apply
a number of techniques aimed at removing redundancies by exploiting the symmetries of the
theory.

One such technique, mentioned previously is that of colour-ordering, in which the colour re-
dundancy of the the SU(3) group is removed and only gauge-invariant partial amplitudes need
be considered. Further detail on colour-ordering is given in Section 2B.

A further useful technique, explained in Section 2C, will seek to remove off-shell redundancy.
Ordinarily, Feynman rules require calculating every partial amplitude starting from off-shell
expressions. The external particles are then taken to be on-shell only at the very end of the
calculation. This new technique, BCFW recursion requires the computation of only on-shell
amplitudes (i.e. those that do not vanish when (6) is satisfied). This reduces the number of DoFs
(degrees of freedom) to align with the physical number of DoFs, since non-virtual particles are
required to be on-shell in order to be considered physical.

Finally, it will be demonstrated in Section 3 how a new formalism, twistor formalism, can
incorporate all of the aforementioned restrictions, whilst enabling a further reduction of DoFs,
related to the conservation of the total momentum of all external gluons. This symmetry is only
made manifest in twistor formalism as a result of the implicit total momentum conservation,
which is not present in the spinor formalism.

Thus, the employment of these techniques allows for a number of redundancies present in the
initial formulation to be duly eliminated, enabling an increase in the efficiency of scattering
amplitude computation, as well as a deeper understanding of the theory of gluon interactions.

2. SPINORS

A. Formalism

A conveniently compact notation for expressing and condensing amplitudes derived from Feyn-
man diagrams is given by spinor-helicity formalism. Spinors are solutions to the Dirac equation.
It is therefore no surprise that they show up in the QCD Feynman rules, given that the QCD La-
grangian contains within it the Dirac Lagrangian, which itself contains information about the
dynamics of fermions such as quarks.

The formalism relies upon the approximation of massless fermions or Weyl fermions, which
holds in the high-energy limit and allows the solutions of the Dirac equation to be separated
from four-component Dirac spinors into two two-component objects,

u+(ki) = v−(ki) ≡
(

0
|ki〉ȧ

)
≡
(

0
|i〉ȧ
)
, u−(ki) = v+(ki) ≡

(
|ki]a

0

)
≡
(
|i]a
0

)
, (7)

where ki refers to the ith out of a set of n momenta.
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Each of these objects, known as Weyl spinors, have frame-independent helicity; one of the
objects |i〉ȧ has positive helicity and is known as the right-handed Weyl spinor and the other |i]a
has negative helicity and is known as the left-handed Weyl spinor.4 The dotted and undotted
indices refer to the fact that the two types of spinors form different representations of the SU(2)
group in which they lie ((1

2
, 0) and (0, 1

2
) respectively).

In fact, both types of Weyl spinor combined form an irreducible representation of the proper
Lorentz group,

SU(2)⊗ SU(2)→ SO(1, 3), (8)

from which a more general (massive) solution to the Dirac equation can always be built [5].

Anti-spinors, which represent outgoing anti-fermions (as opposed to the outgoing fermions
represented by spinors) are represented by taking the Dirac conjugate of their corresponding
spinor. This results in left-handed and right-handed Weyl anti-spinors being represented by [i|a
and 〈i|ȧ respectively. For real-valued momenta, spinors and anti-spinors are related by,

[i|a = (|i〉ȧ)∗, 〈i|ȧ = (|i]a)∗, (9)

such that a right-handed anti-spinor may be interpreted as a left-handed conjugate spinor and
similarly for a left-handed anti-spinor.

Thus, the spinor products may be written,

〈ij〉 ≡ 〈i|ȧ|j〉ȧ = u−(ki)u+(kj),

[ij] ≡ [i|a|j]a = u+(ki)u−(kj).
(10)

Spinor products of the same helicity vanish as a result of the helicity projection [6], thus no
shorthand is required for their expression.

Expressing the momentum of a particle in terms of its corresponding spinors is simple,

[i|σµ|i〉 = 〈i|σ̄µ|i] = 2kµi . (11)

This is known as Gordon’s identity.

A number of other spinor identities can be shown which allow manipulation of spinorial scat-
tering amplitudes in order to reach more compact forms; many can be found in Dixon’s 1996
paper [7]. It now stands to introduce the spinor representation of the polarisation vector for
a massless gauge boson of definite helicity ±1. The representation can be shown to have the
desired properties and is presented ipse dixit,

ε+µ (k, q) =
〈q|σ̄µ|k]√

2〈qk〉
, ε−µ (k, q) = − [q|σµ|k〉√

2[qk]
, (12)

where k is the momentum of the boson and q is an arbitrary reference momentum reflecting the
on-shell gauge freedom, which may be chosen for convenience. Certain choices will often allow
multiple terms and diagrams to vanish, simplifying the computation considerably. Some useful
relevant identities are given in the aforementioned paper. σµ and σ̄µ are defined as follows,

σµ = (1, σ1, σ2, σ3), σ̄µ = (1,−σ1,−σ2,−σ3), (13)

4 Note that in the massless limit helicity and chirality are equivalent.
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where σi are the Pauli matrices5.

An additional point to note is that the helicities assigned to particles are dependent upon whether
they are incoming or outgoing. In this paper the convention is to label particles with a helicity
as if it is outgoing; if instead it is wished for it to be expressed as incoming, the true helicity is
the reverse of that given in the label.

B. An Example

Now that the rules and notation have been characterised, it serves to provide an illustrative
example. In this paper only tree amplitudes, i.e. amplitudes which do not contain loops, are
discussed. The discussion may also be extended to higher order amplitudes, in which loops may
be present, however tree amplitudes possess certain properties which allow powerful reductive
techniques to be applied as shall be demonstrated later in this paper.

Consider the extremely simple case of a scattering process involving four gluons to leading
order, for which the scattering amplitude is depicted, Atree4 (1−, 2−, 3+, 4+). Such a process is
discussed in Dixon’s aforementioned paper, where the author has made the astute choice of
gluon reference momenta, q1 = q2 = k4, q3 = q4 = k1, such that a number of the relevant
diagrams vanish. Following the approach of Dixon’s paper, it can be seen that the only
non-vanishing diagram that remains is,

,
4+, λ

1−, µ

3+, ρ

2−, να

β

(14)

where both the momentum-helicity labels and the Lorentz indices have been explicitly
added for clarity.

Using the Feynman rules outlined on the previous page, the invariant scattering amplitude is
therefore given by,6

ATree4 (1−, 2−, 3+, 4+) =
iηαβ
s12

· i√
2

(ηµν(k1 − k2)α + ηνα(k2 −
√
s12)µ + ηαµ(

√
s12 − k1)ν)

· i√
2

(ηρλ(k3 − k4)β + ηλβ(k4 −
√
s34)ρ + ηβρ(

√
s34 − k3)λ)

· ε−µ (1, q1) · ε−ν (2, q2) · ε+ρ (3, q3) · ε+λ (4, q4)
(15)

where the factors sij ≡ (ki + kj)
2 = 2ki · kj come about as a result of squaring the propagator

momenta, which are related to the external momenta through total momentum conservation.

5 σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
6 Note that to keep things simple, the explicit portrayal of covariance and contravariance in the tensor indices has

been neglected, in favour of “dotting” the rules together in an intuitive manner. The reader is assured that this is
consistent with a more notationally rigorous approach.
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The last equality comes from the fact that the external momenta are on-shell and massless. For
example, the momentum of the internal gluon, kg may be given by kg + k1 + k2 = 0 which
implies that kg2 = (k1 + k2)2 = s12. It may similarly be given in terms of the total momentum
conservation at the opposite vertex.

Contracting the indices may be done computationally or (somewhat tediously) by hand. Doing
so, and making use of total momentum conservation at each vertex, the following expression
may be obtained,

ATree4 (1−, 2−, 3+, 4+) =

(
i√
2

)2(−i
s12

)
×
[
ε−1 · ε−2 (k1 − k2)µ + (ε−2 )µε−1 · (2k2 + k1) + (ε−1 )µε−2 · (−2k1 − k2)

]
×
[
ε+3 · ε+4 (k3 − k4)µ + (ε+4 )µε

+
3 · (2k4 + k3) + (ε+3 )µε+4 · (−2k3 − k4)

]
.

(16)
At this point, the choice of reference momenta allows all but the ε−2 · ε+3 contractions to vanish.
Thus, after the final contraction is performed,

ATree4 (1−, 2−, 3+, 4+) = − 2i

s12

(ε−2 · ε+3 )(ε−1 · k2)(ε+4 · k3). (17)

Substituting in the expressions for the polarisation vectors and making use of the identities.

|i]〈i| = σµk
µ
i

|i〉[i| = σ̄µk
µ
i ,

(18)

the expression may be written in a spinorial form,

ATree4 (1−, 2−, 3+, 4+) = − 2i

s12

(
−2

2

[43]〈12〉
[42]〈13〉

)(
− [42]〈21〉√

2[41]

)(
+
〈13〉[34]√

2〈14〉

)
(19)

which, after some trivial algebra, yields,

ATree4 (1−, 2−, 3+, 4+) = − 〈12〉[34]2

[12]〈14〉[14]
. (20)

This may be reduced further through judicial use of identities to yield a compact and simple
final expression,

ATree4 (1−, 2−, 3+, 4+) = i
〈12〉3

〈23〉〈34〉〈41〉
, (21)

or

ATree4 (1−, 2−, 3+, 4+) = i
〈12〉4

〈12〉〈23〉〈34〉〈41〉
. (22)

In practice, it may be necessary to calculate the amplitudes for each helicity configuration and
sum over the results so as to obtain the total scattering amplitude of a four-gluon interaction.

C. Colour-Ordering

In this example, it may have been apparent how convenient spinor notation is for expressing
scattering amplitudes in a compact manner, albeit after some extensive algebra. It is also the

7
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case, however, that finding the most compact expression becomes more and more difficult for
higher-order diagrams and that the number of diagrams that need be interpreted increases expo-
nentially with multiplicity, thereby making computation increasingly onerous. This has already
been partially addressed by applying colour-ordering, the significance of which shall now be
explained.

With regards to colour-ordering, the reduction in diagrams occurs as a result of a general
property of the colour structure of tree amplitudes which allows a process called colour-
decomposition to occur. The original Feynman rules (not given in this paper) contain structure
constants fabc for each gluon three-vertex and contracted pairs of structure constants fabef cde
for each gluon four-vertex (see Section 1 for more details). These are defined in terms of the
Gell-Mann matrices T a, i.e. the group generators of SU(3), via

[
T a, T b

]
= i
√

2fabcT c. Using
this definition, and the fact that the SU(3) generators must form the complete set of traceless
hermitian 3 × 3 matrices, it can be shown that any tree amplitude may be reduced to a sum of
single trace terms (see [8] for details),

Atreen (ki, λi, ai) = gn−2
s

∑
σ∈Sn/Zn

Tr(T aσ(1) . . . T aσ(n))Atreen (σ(1λ1), . . . , σ(nλn)), (23)

where ki and λi are the gluon momenta and helicities respectively and gs is the strong coupling
constant. Sn is the set of all permutations of n objects whereas, Zn is the subset of cyclic
permutations.

Thus, it has become evident that only the partial amplitudes, which are of a particular cyclic
ordering, need to be calculated explicitly, before summing over the rest of the permutations.
Crucially, the partial amplitudes are simpler to compute by virtue of their colour-ordering.

D. BCFW Recursion

Whilst colour-ordering limits the number of diagrams that need to be computed, it is still the
case that diagrams corresponding to large multiplicities produce extremely convoluted expres-
sions as a result of their many vertices. BCFW recursion, named after its original proposers
Britto, Cachazo, Feng and Witten, makes use of two known three-gluon amplitudes,

A3(1−, 2−, 3+) =
〈12〉3

〈23〉〈31〉
,

A3(1+, 2+, 3−) = − [12]3

[23][31]
,

(24)

in order to recursively determine the tree-level amplitude of any gluon scattering process re-
gardless of its complexity, thereby bypassing the need to explicate long, convoluted expressions
as well as reducing further the number of graphs to compute. In fact, BCFW recursion may also
be extended to include massive particles [9] as well as diagrams containing loops [10], although
that is beyond the scope of this report. The all-plus or all-minus three-gluon amplitudes are not
needed, since it may be shown that all such amplitudes, regardless of multiplicity, must vanish.
A simple way to see this is by choosing all reference momenta of the polarisation vectors to be
equivalent and to note that ε+i (q) · ε+j (q) = ε−i (q) · ε−j (q) = 0.

8
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1. Derivation

The derivation of the BCFW recursion relation (as outlined coherently in Truijen’s paper [11],
which this paper closely follows) relies on the analytical properties of tree amplitudes. In order
to investigate these properties, the application of a momentum shift or deformation is performed.
This deformation involves two (and only two) of the external momenta being analytically con-
tinued into the complex plane. In general, such a shift for two arbitrary external gluons with
momenta, ki and kj takes the form,

ki → ki(z) = k̂i = ki + zq,

kj → ki(z) = k̂j = kj − zq,
ki · q = 0 = kj · q, q2 = 0, z ∈ C.

(25)

A specific deformation oft used in literature is known as the [i|j〉-deformation,

|i〉 = ˆ|i〉 = |i〉 , |i] = |̂i] = |i] + z|j],
|j] = |ĵ] = |j], |j〉 = ˆ|j〉 = |j〉 − z |i〉 ,
z ∈ C.

(26)

It can be seen that the arbitrarily complicated amplitude,A(z) after such a deformation is neces-
sarily meromorphic as a result of the structure of the Feynman rules, a property which turns out
to be extremely useful. This is because the only non-analytic parts are the isolated propagator
poles which occur when the propagator momenta are on-shell for some value of z.

In order to see how this meromorphic property may prove useful, the following integral is
investigated,

B =
1

2πi

∮
C
dz
A(z)

z
, (27)

where C is given by,

C = lim
R→∞

CR, CR = {z ∈ C|z = Reiθ, 0 ≤ θ ≤ 2π}. (28)

Using the meromorphic property, it is thus possible to apply Cauchy’s residue theorem such that
the calculation of the integral reduces to,

B =
∑
za

Res(
A(z)

z
, za), (29)

where za are the values of z corresponding to poles and their residues in the function A(z)
z

.

The most obvious pole occurs at z = 0, which has a residue A(0) = A, whereas the rest come
from the propagator poles within A(z). Thus, it is possible to write,

B = A+
∑
za 6=0

Res(
A(z)

z
, za). (30)

If the vanishing condition,
lim
|z|→∞

A(z) = 0, (31)

9
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FIG. 2: An arbitrarily complicated tree amplitude in which a single propagator is isolated.

holds, then it follows that the integral given by B vanishes and the original amplitude, A may
be determined if the poles of A(z) and their corresponding residues are known. Indeed, it can
be shown that for the [i|j〉-deformation, the vanishing condition holds as long as the helicities
are chosen such that (hi, hj) = (−,+), (+,+) or (−,−) [12]. In the case of (hi, hj) = (+,−),
the interchange of i and j ensures that this can always be achieved.

In order to determine the poles of A(z), it is instructive to recall that at tree-level they arise
when the propagator momenta are on-shell.

Due to the cyclical arrangement of colour-ordering as well as total momentum conservation
at the vertices, each propagator momentum may be expressed as a sum of the momenta of
neighbouring external gluons attached to either one of the sides (see Figure 2). Thus, a prop-
agator momentum takes the general form, kab(z) = ka(z) + ka+1(z) + . . . + kb(z), where
a, b ∈ {1, . . . , n}.

Using the convenient notation, k̂ab = kab(z), kab = kab(0), it is clear that the poles arise when,

k̂2
ab = 0. (32)

Recalling (25), this can only occur when i and j are on separate sides of the propagator such
that only one is contained within the set {a, . . . , b}, otherwise k̂ab becomes independent of z
and there is therefore no pole. Assuming without loss of generality that i is contained within
the set, such that k̂ab = kab + zq, the condition given by (32) implies that,

z = zab = − k2
ab

2q · kab
. (33)

In particular, for the [i|j〉-deformation,

z = zab = − k2
ab

[j|kab|i〉
. (34)

Thus the pole for each propagator has been determined exclusively in terms of its momentum
and the value of q associated with the shift.

Turning now to the residue associated with each pole, it is necessary to understand the behaviour
ofA(z) when z → zab which equates to when k̂ab → 0. In fact, from the factorisation properties

10
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detailed in Dixon [13], it follows that A(z) factorises into two on-shell sub-amplitudes in the
aforementioned limit. Thus, the residue at the pole zab may be found according to,

Res(
A(z)

z
, zab) = −

∑
λ

A(a, . . . , b,−k̂λab)|zab
1

k2
ab

A(k̂−λab , b+ 1, . . . , a− 1)|zab , (35)

where the sum is performed over both positive and negative helicities and the evaluation sub-
script zab refers to the fact that k̂i and k̂j must be evaluated at the value of z corresponding to
the pole, whereas the squared propagator term is evaluated at z = 0.

Crucially, each side contains fewer than n gluons, and it therefore immediately follows from
the previous discussion that the amplitude may be expressed in terms of the following recursive
relation,

A =
∑
{ab}∈O

∑
λ

A(a, . . . , b,−k̂λab)|zab
1

k2
ab

A(k̂−λab , b+ 1, . . . , a− 1)|zab ,

O = {{ab}|i ∈ {ab} ∧ j /∈ {ab}}
, (36)

where {ab} = {a, . . . , b}. This is none other than the BCFW recursion relation.

Alternatively, the relation may be expressed diagrammatically [14] as,

.

(37)

2. Vanishing Sub-Amplitudes

At the top of this section, it was stated that all all-plus and all-minus helicity amplitudes must
vanish,

An(1±, . . . , n±) = 0 ∀ n. (38)
It may also be shown similarly, by choosing reference momenta q1 = kn, q2 = . . . = qn = k1,
that all all-but-one-plus and all-but-one-minus helicity amplitudes must vanish for more than 3
external gluons,

An(1∓, 2±, . . . , n±) = 0 ∀ n > 3. (39)

BCFW recursion with an [i|j〉-deformation ensures that two more sub-amplitudes vanish in the
special cases of their containing the î and ĵ gluons. Specifically, it can be shown [15] that,

Ai(+,+,−) =

î

l = i± 1

p̂z

= 0, (40)

11
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where the helicities may be assigned to each leg in any combination. Similarly, it may also be
shown that,

Aj(−,−,+) =

ĵ

l = j ± 1

p̂z

= 0. (41)

In demonstrating that a number of sub-amplitudes vanish, it can easily be seen that BCFW
diagrams consisting solely of these particular sub-amplitudes vanish, without having to compute
them. Thus, the number of contributing diagrams to an amplitude for any tree-level process is
greatly reduced (at least for n > 3).

In addition to this, BCFW recursion involves computing exclusively on-shell sub-amplitudes,
thereby removing any redundancy caused by off-shell propagator poles which may cancel be-
tween diagrams. This also has the advantage of eliminating the risk of large numerical errors
occurring from such poles [16].

3. An Example

An example of the use of BCFW recursion can be seen in the derivation of the Parke-Taylor
formula,

AMHV
n (1+, . . . , x−, . . . , y−, . . . , n+) =

〈xy〉4

〈12〉 . . . 〈n− 1n〉〈n1〉
, (42)

which holds for mostly-plus MHV amplitudes [17, 18]. A similar formula also holds for mostly-
minus MHV amplitudes [19] (otherwise known as MHV amplitudes),

AMHV
n (1−, . . . , x+, . . . , y+, . . . , n−) =

[xy]4

[12] . . . [n− 1n][n1]
, (43)

and may also be proven similarly with BCFW recursion, although such a proof is omitted in
this paper.

Comparison with (22) and (24) shows that the Parke-Taylor formula holds in the n = 3 and
n = 4 cases. Thus, a proof by induction may be attempted to extend the proof to n > 4.

Arranging the amplitude as An(1−, . . . , k−, . . . , n+) and applying a |1n〉-deformation it can be
easily seen from the vanishing sub-amplitudes that only a single BCFW diagram contributes,
namely,

,

(44)

12
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where z̃ = z1,n−2 = 〈n−1,n〉
〈n−1,1〉 .

Using induction for the left sub-amplitude and the known expression for the right sub-
amplitude, the amplitude may be expressed as,

An(1−, . . . , k−, . . . , n+) =
〈1̂k〉4

〈1̂2〉 . . . 〈n− 2, k̂n−1,n〉〈k̂n−1,n1〉

× 1

〈n, n− 1〉[n− 1, n]

−[n− 1, n̂]3

[n̂, k̂1,n−2][k̂1,n−2, n− 1]

=
〈1k〉4

〈12〉 . . . 〈n− 2, k̂n−1,n〉〈k̂n−1,n1〉

× 1

〈n, n− 1〉[n− 1, n]

−[n− 1, n]3

[n, k̂n−1,n][k̂n−1,n, n− 1]
,

(45)

where ka,b = ka + . . .+ kb.

It then follows from,

〈n− 2, k̂n−1,n〉[n, k̂n−1,n] = −〈n− 2, n− 1〉[n− 1, n],

〈k̂n−1,n1〉[k̂n−1,n, n− 1] = −〈1n〉[n, n− 1],
(46)

that this is equivalent to the Parke-Taylor formula for n gluons,

An(1−, . . . , k−, . . . , n+) =
〈1k〉4

〈12〉 . . . 〈n− 1, n〉〈n1〉
, (47)

as required.

3. TWISTORS

A. Motivation

Whilst BCFW recursion has proven to be an invaluable technique, it can often lead to ex-
pressions involving a convoluted mess of spinor products, meaning a considerable degree of
assiduousness is necessary in order to represent them in their most compact form. Indeed it is
not always immediately obvious how two expressions are supposed to be equivalent. Take, for
example, the algebra required to reduce (45) to (47). In practice, this means that an impractical
amount of computation would be required to simulate interactions to the accuracy required by
the current second run of the LHC using spinors [20]. Further to this, in the spinorial partial
amplitudes of non-MHV amplitudes, there remain singularities, or spurious poles which are not
present in the total amplitude [21].

The fact that these superfluous expressions exist within the BCFW spinor formalism reflects
a hidden symmetry that has not been made manifest. A relatively recent formalism known as
momentum twistor formalism has been suggested in hope of rectifying this issue. Momentum
twistors were first proposed by Hodges [22] as an application of Roger Penrose’s twistor theory

13
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in the context of scattering amplitudes, and a number of authors have since had some success
in applying the theory to modern high-multiplicity loop calculations [23–25]. Elsewhere in this
paper, momentum twistors shall simply be referred to as twistors.

The advantage of twistors as opposed to spinors is that a hidden symmetry, dual conformal
symmetry, can be naturally expressed in twistor coordinates and thereby made manifest [26].

B. Dual Conformal Symmetry

Whilst spinors transform linearly under Lorentz transformations, thereby resulting in manifestly
Lorentz-invariant amplitudes, they do not transform linearly under a general Poincaré transfor-
mation. The Lorentz group is, in fact, a subgroup of the Poincaré group containing only the
isometries7 that leave the origin unchanged. This means that spinors do not transform linearly
under translations in momentum-space and thus expressions containing spinor products con-
tain added redundancy in the form of non-implicit total momentum conservation. Hence, for n
external momenta, the condition,

n∑
i=1

ki = 0, (48)

must be explicitly imposed to produce a fully compact amplitude.

In spinor formalism, therefore, total momentum conservation must generally be imposed in a
rather ad hoc manner. The partial amplitudes are determined from the Feynman rules, and then

a delta function δ4(
n∑
i=1

ki) is applied to each so as to simplify the expression. An example of

this can be seen in (45) where between the first and second lines, the denominator of the right-
most fraction has been reexpressed by virtue of total momentum conservation, which amounts
to multiplication by the aforementioned delta function.

Twistors, by contrast, make use of new dual space8 coordinates which enable them to pro-
duce manifestly dual-conformally invariant amplitudes, formed from objects with implicit total
momentum conservation without the need for the ad hoc application of delta functions.

In fact, dual-conformal symmetry pertains to more than just total momentum conservation and
reflects additional symmetries only present in massless particles. The conformal group is an
extension of the Poincaré group which includes special conformal transformations and dilations.
This results in a total of 15 symmetries as opposed to the 10 in the Poincaré group and the 6 in
the Lorentz group. Thus, amplitudes expressed in terms of twistors are invariant under the full
range of relevant transformations, meaning that no identities are required in order to simplify
them. It might therefore be expected that scattering amplitudes expressed in terms of twistor
coordinates lend themselves to more efficient numerical computation.

7 An isometry is a linear transformation that preserves length.
8 The dual space corresponding to a vector space (in this case momentum space) consists of all linear functionals

on the vector space together with pointwise addition and scalar multiplication.

14



D T Dobrowolski From Spinors to Twistors

C. Formalism

To begin to understand these new coordinates, it is useful to consider a geometrical interpreta-
tion of total momentum conservation:

k6

k5

k4

k3

k2

k1

kn

y7

y6

y5

y4

y3

y2

y1

yn. (49)

Laying each of the n external momentum vectors end to end forms a closed loop if total mo-
mentum is conserved. The dual-space coordinates yµi may then be introduced to represent the
points at which each pair of successive vectors meet, such that,

kȧai = yȧai − yȧai+1. (50)

Thus, the condition of momentum conservation may be expressed as yn+1 = y1 or equiv-
alently as yn = y0. Clearly, ki must be invariant under a general translation in dual-space
(yi → yi+ c ∀ i ∈ {1, . . . , n}, where c is a constant four-vector). Indeed, since colour-ordered
partial amplitudes depend upon sums of consecutive ki, it can be shown that they are invari-
ant under any conformal transformation of dual-space, not just translations. Thus, expressing
partial amplitudes in terms of dual-space coordinates ensures that they become manifestly dual-
conformally invariant [27].

As solutions of the Weyl equations, the spinors must satisfy,

〈i|σµkµi = 0, [i|σ̄µkµi = 0, (51)

from which it follows from (50) that 〈i|ȧ(σ · yi)ȧa = 〈i|ȧ(σ · yi+1)ȧa and similarly for [i|a. Thus,
for each dual-space coordinate, the following incidence relations,

[µi|a = 〈i|ȧ(σ · yi)ȧa = 〈i|ȧ(σ · yi+1)ȧa,

〈µi|ȧ = [i|a(σ̄ · yi)aȧ = [i|a(σ̄ · yi+1)aȧ,
(52)

hold, where [µi|a and 〈µi|ȧ are newly defined variables.

From this it can be seen that the line in y-space determined by any two points, yi and yi+1,
may be defined in terms of a point in Z-space, ZI

i ≡ (|i〉ȧ , [µi|a), where I = (ȧ, a) is an
SU(2, 2) index. These new four-component variables, ZI

i are the objects referred to as twistors,
which allow scattering amplitudes containing solely right-hand Weyl spinors to be reexpressed
to ensure the manifestation of dual-conformal invariance.

To reexpress the left-handed Weyl spinors in a similar fashion, an object called the dual-twistor
may also be defined, conveniently in terms of twistors,

WA
i ≡ (〈µi| , |i]) ≡

εABCDZ(i−1)BZiCZ(i+1)D

〈i− 1, i〉〈i, i+ 1〉
, (53)

15



D T Dobrowolski From Spinors to Twistors

ensuring that all left-handed Weyl spinors defined via the dual-twistor automatically satisfy total
momentum conservation.

Thus, scattering amplitudes may be expressed in terms of components of twistors and dual-
twistors, instead of directly as spinor products, ensuring that the required invariance is mani-
fest. In order to ensure that the resulting amplitudes are in their most compact form, it is not
necessary to apply a number of identities on a case by case basis as was the case for spinorial
expressions, but merely to produce a canonical form of the twistors that can be applied to any
number of colour-ordered expressions, which amounts to choosing a special frame to evaluate
the kinematics.

D. Canonisation

In order to fix the required parameters, the n twistors involved in an interaction are first ex-
pressed in the form of a 4× n matrix,(

|1〉 |2〉 . . . |n〉
|µ1] |µ2] . . . |µn]

)
. (54)

Such a matrix has 4n independent entries but must be transformed so as to contain only the
3n − 10 independent parameters associated with the physical number of DoFs of the system.
The figure 3n − 10 may be understood as follows. Firstly, for n particles there are n four-
momenta and therefore 4n potential DoFs. The trivialisation of the on-shell condition enabled
by the massless approximation in the high-energy limit, described earlier in this paper, reduces
this number to 3n. The added constraint of total four-momentum conservation results in a
further reduction by four DoFs. The final six reductions may be achieved by fixing the frame
of the kinematics through a number of Lorentz transformations followed by a final rescaling of
momenta. For example, the system may be rotated and boosted such that the first two momenta
are fixed in opposite directions along the z-axis. This amounts to fixing three parameters. Then,
the system may be boosted along the z-axis such that the magnitudes of the first two momenta
are made equivalent, resulting in the fixing of the fourth parameter. A rotation may then be
performed about the z-axis so as to bring the third momentum into the x-z plane, fixing the fifth
parameter. The final parameter may then be fixed by rescaling the momenta such that s12 = 1.

A particularly neat canonical form for the Z and W matrices has recently been devised by
Badger, [28] which makes use of the spinor-space equivalent (as opposed to momentum-space)
of this very procedure. Firstly, the spinors are rotated such that the first two spinors take the

form
(
c
0

)
and

(
0
c′

)
, where c and c′ are non-zero values. All of the spinors are then rescaled by

a process called little group scaling9 such that the first and second spinors take the form
(

1
0

)
9 The little group (the ISO(2) group in the massless case [29]), is defined as the subgroup of Lorentz transforma-

tions which leave the 4-momentum of on-shell particles invariant, therefore not affecting the overall amplitude.
Such transformations correspond to a special combination of Lorentz boosts and rotations known as Wigner
rotations [30]. Little-group scaling is the representation of these transformations in spinor space which amounts
to the following mapping |p〉 → t|p〉, |p] → 1

t |p]. From (11) it can be seen that this leaves the momentum
unaffected.
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and
(

0
1

)
respectively, whilst the remaining spinors take the form

(
ci
1

)
where ci varies from

spinor to spinor.

From these transformed spinors, the |µi]s may then be determined with some choice of y0 such
that the first two |µi]s are null. The Z-matrix is thus constructed. The W -matrix may then be
derived via (53).

The final canonical form of the Z-matrix is given by,
Σi

s12
1− δ1i

〈123i〉〈34〉[23]
〈1234〉〈1i〉[12]

−〈13〉〈124i〉+〈14〉〈123i〉
〈1234〉〈1i〉

 , (55)

where,

Σi =

{
0 i=1
〈13〉〈2i〉
〈23〉〈1i〉 otherwise

, (56)

and 〈ijkl〉 is a conformally invariant object known as the 4-bracket and defined by,

〈ijkl〉 = εABCDZiAZjBZkCZlD. (57)

For example, for n = 4 gluons, Badger’s Z matrix is given by,
1 0 1

s12
1
s12

〈13〉〈24〉
〈23〉〈14〉

0 1 1 1
0 0 0 1
0 0 1 1

 ≡


1 0 1
s12

Σ4

s12
0 1 1 1
0 0 0 1
0 0 1 1

 , (58)

where Σ4 and s12 are the two independent parameters.

The corresponding W matrix is,
0 0 − s212

−1+Σ4
0

0 0 0 s12
−1+Σ4

1 s12 −s12 0

−1 0 − s12
−1+Σ4

s12
−1+Σ4

 . (59)

A quick check that this formulation is behaving as it ought to may be achieved by verifying the
Schouten identity,

〈ij〉〈kl〉 = 〈ik〉〈jl〉+ 〈il〉〈kj〉. (60)

For example, for i = 1, j = 2, k = 3, l = 4,

LHS =

∣∣∣∣∣ 1 0

0 1

∣∣∣∣∣×
∣∣∣∣∣ 1
s12

Σ4

s12

1 1

∣∣∣∣∣ =
1− Σ4

s12

RHS =

∣∣∣∣∣ 1 1
s12

0 1

∣∣∣∣∣×
∣∣∣∣∣ 0 Σ4

s12

1 1

∣∣∣∣∣+

∣∣∣∣∣ 1 Σ4

s12

0 1

∣∣∣∣∣×
∣∣∣∣∣ 1
s12

0

1 1

∣∣∣∣∣ =
1− Σ4

s12

. (61)
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E. An Example

As an example of the increase in efficiency provided by twistor formalism, consider the follow-
ing expression taken from part of the 7-gluon NMHV amplitude,

1

2i

(
〈24〉〈12〉[12][24] + 〈12〉[25][12]〈25〉+ [24]〈12〉[13]〈34〉+ 〈35〉〈12〉[13][25]

+ 〈45〉〈12〉[45][12] + 〈24〉[12]〈13〉[34] + [35][12]〈13〉〈25〉
+ [34]〈13〉〈34〉[13] + 〈35〉[35]〈13〉[13] + 〈45〉[45]〈13〉[13]

), (62)

which may be simplified, after an exhausting amount of algebra, to the form,

− 1

2i
〈1|2 + 3|4 + 5|6 + 7|1], (63)

where 〈1|2 + 3|4 + 5|6 + 7|1] gives eight terms of the form 〈1|i|j|k|1] = 〈1i〉[ij]〈jk〉[k1] with
i ∈ {2, 3}, j ∈ {4, 5}, k ∈ {6, 7}. The initial expression requires 217 operations to compute,
whereas the simplified expression requires 175.

Substituting either expression into Badger’s Z matrix gives a unique expression,

is2
12X4(Y5 − Y6 −X5Y7 +X6Y7 −X6Y5Y7 +X5Y6Y7)

2(1− Σ4)(Σ5 − Σ6)
, (64)

where Xi and Yi refer to the 3rd and 4th row of the ith column of the Z matrix respectively.
This expression requires only 59 operations to compute, implying that a significant increase of
computational efficiency has been gained by using twistor formalism.

4. CONCLUSIONS

This paper has demonstrated the efficacy of some of the techniques developed to improve scat-
tering amplitude computation. The three main techniques covered were those of colour decom-
position, BCFW recursion and momentum twistor formalism. The first technique removes the
redundancy in the field theory resulting from SU(3) colour symmetry and it was shown how
this reduces the number of partial amplitudes that need be computed. The second technique
removes the off-shell redundancy from amplitude calculations, whilst allowing diagrams to be
calculated recursively. It was explained how this reduces the number of contributing partial
amplitudes significantly and the particularly impactful example of the use of BCFW recursion
in proving the Parke-Taylor formula for MHV amplitudes was given. Finally, an overview of
momentum twistor formalism was presented, in which the role of twistors in implicitly restrict-
ing the amplitudes according to total momentum conservation was demonstrated. In particular,
it was shown how Badger’s canonical form of the twistor matrix significantly reduces the num-
ber of operations required in the computation of an expression included in the 7-gluon NMHV
tree amplitude. Of course, in this paper the focus has been on tree-amplitudes, however the
application of these techniques to one-loop amplitudes has already been demonstrated and it is
conjectured that they may prove useful up to all loop orders [31].
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Appendix

The code used for the example in Section 3E reads as follows. Use is made of the
S@M package developed for Mathematica, documentation for which may be found here:
https://arxiv.org/pdf/0710.5559v2.pdf.
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