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Abstract

Connectivity invariants aim to give a quantifiable measure of robustness to analyze the effect
of failure on a network. This report introduces the notions of vertex and edge connectivity of
a graph, giving explicit steps for their calculation. Whitney’s Inequality relates these connec-
tivity invariants and the minimal vertex degree. Fundamental theorems in connectivity, such
as, Menger’s Theorem, Whitney’s Theorem and the duality between maximal flow and minimal
capacity cuts will be discussed in-depth. A solution to the edge connectivity augmentation prob-
lem will be presented using the cactus representation. Construction of the cactus representation
will be detailed in meticulous steps with a critical analysis of current literature. An introduction
to the basic concepts of graph theory, graph representations, complexity theory and algorithmic
problem solving are also included.
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Chapter 1

Introduction

Graphs and networks are prolific in their description of numerous real world processes and sys-
tems. In this increasingly connected world, the ability to quantify and analyze these connections
becomes a greater necessity as the demand and strain on systems tests their reliability. A funda-
mental question is to quantitatively measure the connectivity of these systems which describes
their robustness and reliability. This report will familiarize the reader with various aspects of
graph connectivity.

The content of this report is structured as follows:
An introduction to the basic concepts of graph theory and the notation used henceforth in this
report is given in Chapter 2. This chapter will also discuss various graph representations. Since
this report focuses mainly on an algorithmic approach to problem solving, Chapter 3 contains
some basic algorithms in graph theory to make the reader familiar with relevant techniques. This
is followed by a brief introduction into the fundamental notions of complexity theory.

After these two introductory chapters the attention shifts to the central topic of this report:
graph connectivity. There are three natural problems which arise in this context: various no-
tions of graph connectivity and their explicit calculation; relations between these different graph
connectivity notions; the problem of improving graph connectivity in the most efficient manner.

To set the scene for explicit graph connectivity calculations, this report will introduce flow
networks in Chapter 4. There is a natural duality between maximum flows and minimal capacity
cuts, in solving the maximum flow problem, which is usually solved using the Ford-Fulkerson
Method, this duality will give the foundation for calculating graph connectivities. These aspects
are explained in detail in this chapter.

In Chapter 5 the basic notions of vertex and edge connectivity are introduced. Fundamental
results related to the duality of vertex connectivity are Menger’s Theorem and Whitney’s Theo-
rem. Whitney’s Inequality provides a relation between these two connectivity invariants and the
minimal vertex degree.

Chapter 6 is concerned with the problem of increasing the edge connectivity of a graph by
one. An optimal solution for this problem is surprisingly difficult and requires the introduction of
new concepts such as cactus representation. The literature (sometimes in Russian) on this topic
is highly fragmented and difficult to follow. Moreover, some of the articles used in this report
are ambiguous in their explanations and lack the required information to provide a complete
and coherent solution, with some sources even being noted as incorrect by other authors. A
main challenge in the preparation of this chapter was to overcome these difficulties with the
literature. The aim of Chapter 6 is therefore to present the approach of one known solution
in a comprehensive manner: presenting a step-by-step formulation of the algorithm alongside a
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critical analysis of prior research.
A conclusion of this report is presented in the final Chapter 7. Python source code developed

by the author is included in various appendices. Moreover, throughout this report algorithms
are accompanied by in-text pseudo code for the reader’s convenience.
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Chapter 2

Basic Concepts from Graph
Theory

Graph theory and topology both originate from a problem first posed by Sunday walkers in the
city of Königsberg (now Kaliningrad) in the 1700’s [36]. The city itself is split by the Pregel
River into four distinct quarters: the north, the south and two islands in between (figure 2.1),
with seven bridges connecting these quarters together. The exact problem asks, is it possible
to walk across each of the seven bridges exactly once in a walk around the city of Königsberg,
furthermore if such a walk exists, is it possible return to the quarter where the walk started. This
question intrigued mathematicians at the time, spawning many attempts to solve the problem.
Some mathematicians simply computed all possible walks across the bridges and deduced that
it was not possible to complete such a walk around the city. Such numerical solutions displeased
many mathematicians at the time, as many wanted a general solution for similar problems, rather
than the specific solution to this problem.

Figure 2.1: A plate of the 7 bridges of
Königsberg stretching across the Pregel River.
Source: [43].

1

2

3

4

Figure 2.2: Graph of Königsberg.

Many attempts to find a general solution focused mainly on the bridges; whereas Leonard
Euler, observed in 1735 [13] that the bridges alone are not the key to a general solution, the
quarters also need to be taken into consideration. In particular, one should consider the number
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of bridges connecting one quarter to one another. Euler reformulated the problem in an abstract
way, considering each independent quarter as a uniquely labelled vertex, and each bridge as a
unique edge (as in figure 2.2), hence laying the foundations for graph theory. Euler’s solution to
the Seven Bridges problem highlights an important tool for solving a later problem in this report
and therefore will be presented in section 6.4.

2.1 Elements of Graphs

Euler laid the foundations of graph theory with the vertex and the edge. Combining a set of
n vertices, V = {v1, v2, ..., vn}, and set of m edges, E = {e1, e2, ..., em}, yields a finite graph
G = (V,E). The cardinality of the set V and E is denoted by |V | and |E|.

Edges in G may be undirected, with e given by an unordered pair of vertices (vi, vj) = (vj , vi),
meaning that an edge joining two vertices, acts in both directions. Edges may also be directed,
with e given by an ordered pair of vertices (vi, vj) ̸= (vj , vi), meaning that the edge has an origin
vi denoted e−, and an endpoint vj denoted e+. Any graph whose edges are all directed, is called
a digraph (Directed graph). Furthermore, a graph which has at least two identical edges ei = ej
for some i ̸= j, is said to be a multigraph. If an edge in G connects a vertex to itself, then this
edge is called a loop and G is also said to be a multigraph. A graph which is not a multigraph
and has only undirected edges is said to be a simple graph. Within this report, the term ”graph”
refers to a finite undirected multigraph (which may be simple) unless stated otherwise.
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Figure 2.3: Undirected Graph.
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Figure 2.4: Directed Graph.
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Figure 2.5: Simple Graph.
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Figure 2.6: Multigraph.

Graphs often have other information encoded into both the vertices and edges. Edges often
have length or weighting encoded to represent the distance or cost of transition between two
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vertices. Any graph G = (V,E) which has weight (equivalent to length) function ω : E 7→ R+ on
the set of edges, is called a weighted graph.
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Figure 2.7: Weighted Graph.

2.1.1 Sub-graphs

The notation and content of this sub-section closely follow that of Jungnickel 2013 [25, p. 3-4].
When analysing a graph G = (V,E), it is important to consider graphs contained within G.

Such smaller graphs G′ are called subgraphs of G, which are obtained by choosing a set V ′ ⊆ V
and taking the set of all edges e ∈ E which have both their endpoints in V ′, denoted by E|V ′. The
graph G′ = (V ′, E|V ′) is called the induced subgraph of G. Another type of subgraph is formed
by taking a subset of edges of an induced subgraph, E′ ⊆ E|V ′, then the graph G′ = (V ′, E′)
is simply called a subgraph of G. In addition a subgraph with V ′ = V is said to be a spanning
subgraph of G and G is a spanning induced subgraph of G.

In this report, subgraphs will often be formed by removing a subset of vertices or edges hence,
let G\SV denote the induced subgroup G′ = (V \SV , E|V \SV ) on G, where SV ⊆ V . Similarly
G \ SE denotes the the spanning subgraph G′ = (V,E \ SE), where SE ⊆ E.

12

3 4 5

6

Figure 2.8: Simple graph G = (V,E).
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6

Figure 2.9: Induced subgraph G \ {1, 5}.
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Figure 2.10: Spanning subgraph G \ {(1, 3), (2, 5), (4, 5)}.

2.1.2 Walks, Trails, Paths & Circuits

Walks are a key tool in graph theory as they allow for movement from one vertex to another.
In the Seven Bridges problem the idea of a walk motivated the problem, in particular, a walk
over bridges (edges) to different quarters (vertices). A walk (as in Jungnickel 2013 [25, p. 5]) is
defined as follows:

Definition 2.1.1. Given a graph G = (V,E) and ε = (v0, e1, v1, e2, v2, ..., en, vn), a sequence of
edges ei ∈ E and vertices vi ∈ V , such that ei = (vi−1, vi) for i = {1, ..., n} then ε is a walk.

Walks define the most general form of movement within a graph. When further constraints
are applied to a walk, more interesting movements can be defined. These movements are defined
as given in Jungnickel 2013 [25, p. 5]. Given a walk ε, if v0 = vn then ε is a closed walk. Given
a walk ε if each edge ei ∈ ε is distinct then ε is a trail. If a trail has v0 = vn then ε is a closed
trail. Then a path is a trail with each vj distinct. Furthermore a closed trail with n > 2 and all
vj distinct is called a cycle or closed path. A graph which contains no cycles is then called an
acyclic graph.

A graph for which all pairs of vertices vi, vj ∈ V have some path which starts at vi and ends
at vj is called a connected graph. Conversely for some graphs it may not be possible to form such
a path; in these cases vj is said to be unreachable from vi and the graph is called disconnected.
A connected component of a graph G = (V,E) is any induced connected subgraph G \ SV , such
that for any S′

V where SV ⊂ S′
V then G\S′

V is disconnected and G\SV is a maximally connected
subgraph. If a graph is connected then it is said to have one connected component (G itself). If
a graph is disconnected, then the number of connected components is the number of maximally
connected subgraphs of G (For example the graph in figure 2.9 has 3 connected components).

Lemma 2.1.1. A connected simple graph G = (V,E) with |V | = n, has |E| ≥ n− 1.

Proof. (Based on Jungnickel 2013 [25, p. 7]) Consider n = 1, an isolated vertex, which is con-
nected. Now consider the case n ≥ 2. Given a graph G = (V,E), choose any vertex v ∈ V and
consider the subgraph H = G \ v. Now, H may be disconnected, with m connected components,
consider each connected components Zi, 1 ≤ i ≤ m, with ni vertices respectively. By induction,
assume that each Zi has at least ni−1 edges. Notice that also v must be connected to each Zi in
G by at least one edge. Therefore, G must contain at least (n1− 1)+ ...+ (nm− 1)+m = n− 1
edges.

Lemma 2.1.2. An acyclic simple graph G = (V,E) with |V | = n, has |E| ≤ n− 1.

Proof. (Based on Jungnickel 2013 [25, p. 7]) For n = 1 or E = ∅, trivially, no cycles exist. Now,
consider the acyclic graph G = (V,E) a spanning subgraph G \ e, for some arbitrary edge e ∈ E,
has exactly one more connected component as no path can be found between the endpoints of e
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in G \ e, otherwise G would contain a cycle. Then, G \ e, has m acyclic connected components
Zi, 1 ≤ i ≤ m. By induction, assume that each Zi has at most ni − 1 edges. Therefore, G must
contain at most (n1 − 1) + ...+ (nm − 1) = (n1 + ...+ nm)− (m− 1) ≤ n− 1 edges.

2.1.3 Cuts

A cut C = (S, T ) partitions a given graph G = (V,E) by its vertices into two disjoint subsets,
S, T ⊂ V . Each cut induces a edge-cut SC = {e ∈ E : e = (i, j), i ∈ S, j ∈ T}, a set of edges such
that one endpoint is in S and the other is in T .

Cuts and edge-cuts, are an interesting topic of discussion which will be explored later in this
report, looking at problems such as the minimum cardinality of a set-cut on G.

Figure 2.11: A cut C = (S, T ) on a simple graph, s ∈ S (blue), t ∈ T (red), edge-cut (black).

2.1.4 Degree Sequences

In an undirected graph G = (V,E) the degree of a vertex v ∈ V , is the number of edges incident
from v, denoted deg(v). The degree sequence of a graph G is a set D, comprised of the degree of
each vertex such that the ith entry in the sequence is the degree of the ith vertex in V . That is,

D = {di : di = deg(vi), vi ∈ V, i ∈ {1, 2, ..., n}}. (2.1)

1

2 3

D = [2, 2, 2]

1

2 3

4 5

D = [1, 3, 2, 2, 3]

1

2

3

4

5

6

D = [3, 2, 3, 1, 0, 1]

Figure 2.12: Examples of degree sequences.

Theorem 2.1.1. For any undirected graph G = (V,E) with degree sequence D,∑
di∈D

di = 2|E|. (2.2)

Proof. Each edge e ∈ E has two endpoints. Hence each e contributes twice in the summation,
once for each endpoint.
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From theorem 2.1.1 it is possible to extrapolate some conditions which can be imposed on
degree sequences for an arbitrary undirected graph. One such condition is given by Euler [13]:

Lemma 2.1.3. (Handshaking Lemma) For a degree sequence D of a undirected graph G =
(V,E) has an even number of odd di.

Proof. As,
∑

di∈D di = 2|E|, is even. Then, there must be an even number of odd di.

When performing analysis on degree sequences, it is important to consider two important
values: the minimal value of D, denoted δ(G) = min(di ∈ D), and the maximal value of D,
denoted ∆(G) = max(di ∈ D). Using these values, a constraint on the degree sequence of simple
graphs can be formulated by applying the pigeonhole principle,

Lemma 2.1.4. Given a simple graph G = (V,E) with |V | ≥ 2 and degree sequence D. Then
there are always at least two di ∈ D with the same value.

Proof. For a given simple graph G = (V,E) the maximal possible value of ∆(G) is |V | − 1, the
smallest possible value of δ(G) is 0, this gives |V | possible values for each di. However, the values
∆(G) = |V | − 1 and δ(G) = 0 cannot occur simultaneously for a simple graph, this gives |V | − 1
possible values for each di but |V | vertices each with a degree di. By the pigeon hole principle,
there must be at least two di of the same value.

Lemma 2.1.4 dictates that not all arbitrary degree sequences are realized by a simple graph.
Hence, is it possible to find a set of conditions which can determine if, any arbitrary degree
sequence if it is realized by a simple graph? These conditions solve a problem known as the
graph realization problem, with any degree sequence satisfying these conditions called graphic.
Such a set of conditions were first published in 1960 by Paul Erdős and Tibor Gallai [12] and
later proved in 1972 by Frank Harary [19],

Theorem 2.1.2. (Erdős-Gallai Theorem) Let D = (d1, ..., dn) be an arbitrary degree sequence
with d1 ≥ d2 ≥ ... ≥ dn. D is graphic if and only if the following conditions hold:

n∑
i=1

di , is even, (2.3)

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min(k, di) , k = 1, 2, ..., n. (2.4)

Proof. See Harary 1972 [19, p. 59]

These conditions enable quick verification of whether a degree sequence is graphic. However,
they do not provide any method of actually obtaining the simple graph which realizes this degree
sequence. Such a method will be covered later in the report as an introduction to algorithms.
Something of note is that the degree sequence is not always unique: two graphs may have different
underlying structures but the same degree sequence.
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2.2 Complete Graphs

The complete graph on n vertices, denoted Kn, is a simple graph, such that |V | = n and each
vertex has degree equal to n − 1. Hence, each vertex is adjacent to every other vertex and
|E| = n(n− 1)/2.

K3 K4 K6

Figure 2.13: Examples of complete graphs.

2.3 Trees & Forests

An acyclic simple graph which is connected is called a tree. As a tree is acyclic, the removal of
any edge will disconnect the tree into a disjoint union of trees, called a forest. A leaf of a tree is
then any vertex with degree equal to one.

Lemma 2.3.1. Given a tree GT = (V,E) with |V | = n then, |E| = n− 1.

Proof. GT is a tree, therefore, GT is connected and acyclic. By Lemma 2.1.1 and lemma 2.1.2,
n− 1 ≤ |E| ≤ n− 1, which implies |E| = n− 1.

Lemma 2.3.2. A forest GF = (V,E) with |V | = n and k connected components then, |E| = n−k.

Proof. Each connected component has ni vertices and therefore, ni − 1 edges by lemma 2.3.1.
Summing the number of edges over k connected components gives

∑i
k vi − 1 = n− k.

2.3.1 Spanning Trees

Given an undirected graph, then a spanning subgraph whose structure is a tree is said to be a
spanning tree (Figure 2.14). For a weighted graph, a spanning tree of this graph will then have
an overall weight equal to the sum of all weights on its edges. Finding the spanning tree with
the lowest total weighting across all edges can reduce the costs associated with the system and
increase its efficiency. Such a spanning tree is called the minimal spanning tree. Formally, given
a undirected weighted graph G = (V,E) with weight function ω, a spanning tree GT = (VT , ET )
of G is said to be a minimal spanning tree of G if

∑
e∈ET

ω(e) is minimal across all spanning
trees of G. An example of a minimal spanning tree is presented in figure 2.14. Finding minimal
spanning trees is not trivial and will be discussed later in this report as generating this structure
requires computational methods.
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Figure 2.14: Weighted graph with spanning tree (blue).

Note: A tree structure is a requirement for systems such as the Internet as cycles cause
feedback on data transmission, which is fatal to most computer networks. However, having a
tree structure is not reliable as one disconnection (removed edge) causes the graph to become
separated. Therefore, most systems do not limit themselves to a tree structure, but instead opt
for a structure with more connections (and therefore contains cycles). But to avoid feedback
from cycles, these systems only communicate via a spanning tree (See Spanning Tree Protocol
(STP) [41] for exact implementation). In these systems, all vertices know the spanning tree
and exclusively communicate via this tree. If one connection in the spanning tree is lost, the
system can attempt to find another spanning tree to communicate through, hence creating a
more reliable system.

2.4 Representation of Graphs

A graph may not be unique, especially when the labelling of vertices is irrelevant to the system.
If two graphs have the same underlying structure and one can a labelling such that the two
graphs are equivalent, then these graphs are said be isomorphic. That is, the graphs G = (V,E)
and H = (V ′, E′) are said to be isomorphic (G ∼= H) if there exists a bijection, θ : V 7→ V ′, such
that θ(E) = E′ where θ(E) = {(θ(i), θ(j)) : (i, j) ∈ E}.

For many real world systems, such as transport networks, their graphs are best represented
graphically (presented visually), so that the system is easier to read and understand. Graphic
representations can be an effective method for conveying a lot of information in a condensed
format but often take a lot of time to produce. As figures 2.15 and 2.16 demonstrate, the dif-
ficulty for determining whether a graph is a tree varies wildly between these different graphical
representations. It can be very difficult to perform computational operations on a graphic repre-
sentation, due to the time required for a computer to understand the graphs. In many situations,
a computer will simply not be able to perform analysis on graphical representations. This sec-
tion will therefore focus on introducing a variety of computational representations. Just as two
graphic representations (e.g. figure 2.15 and figure 2.16) can determine properties at different
efficiencies, so too can different computational representations of graphs. These representations
will be used later in this report to solve problems using computational methods.
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Figure 2.15: Tree G = (V,E) with |V | = 50. Figure 2.16: Tree G = (V,E) with |V | = 50.

1 2 3 4

5 6 7 8

Figure 2.17: Simple graph G1.

1 2 3 4

5 6 7 8

Figure 2.18: Directed multigraph G2.

2.4.1 Edge List

An edge list representation of a graph G = (V,E), is a list comprised of all ordered pairs of
vertices (vi, vj) which form an edge in E. An edge list on its own is not guaranteed to encode
all the data required to reconstruct a graph; (take for example figure 2.17 and figure 2.18) an
isolated vertex will not appear in any element of the edge list. Hence, an edge list must also have
attached the number of vertices in the graph, |V |, so that it can reconstruct isolated vertices.
Thus an edge list for a directed multigraph G = (V,E) on a vertex set V and edge set E (as in
Jungnickel 2013 [25, p. 39]) is defined by:

1. n = |V |.

2. The list of its edges ek, given as a sequence of ordered pairs (vi, vj)k ∈ E.

A similar definition is given for a simple graph G = (V,E). However the list of its edges ek, is
given by a sequence of unordered pairs (vi, vj)k ∈ E.

The graphs G1 and G2 as in figure 2.17 and figure 2.18 can be represented respectively as an
edge list as follows:

Example Edge Lists

G1
n 8
Edge List {(1, 2), (2, 3), (2, 4), (5, 6), (5, 7)}

G2
n 8
Edge List {(1, 5), (1, 5), (2, 3), (2, 4), (4, 4), (5, 6), (5, 7), (7, 5), (7, 6)}

Storing a graph as an edge list, requires space for 2|E| + 1 integers; n and the edge list
consisting of |E| pairs of integer. Edge lists will prove to be a useful representation later in this
report. However, they do not allow for quick analysis of certain properties of vertices. Take for
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example calculating the degree of a specific vertex; a program would have to read the whole edge
list counting each time the desired vertex appeared. Hence, for more problems where the vertices
take precedence, a more desirable representation should encode n so that isolated vertices are
not ignored and be sorted by vertex.

2.4.2 Adjacency List

An adjacency list representation of a graph encodes n = |V | by taking a list of n lists, for which the
ith list contains the set Ei such that some vj is incident from vi, that is, Ei = {vj : (vi, vj) ∈ E}.
Hence, an adjacency list of a directed multigraph G on a vertex set V (as in Jungnickel 2013 [25,
p. 40]) is defined by:

1. n = |V |.

2. E1, ..., En, where Ei is a list containing all vertices vj for which the directed edge e =
(vi, vj) ∈ E.

Storing a graph as an adjacency list, requires space for |E| integers; one for each edge. The
graphs G1 and G2 as in figure 2.17 and figure 2.18 can represented respectively as an adjacency
list as follows:

Example Adjacency Lists
G1 {2}, {1, 3, 4}, {2}, {2}, {6, 7}, {5}, {5}, {}
G2 {5, 5}, {3, 4}, {}, {4}, {6, 7}, {}, {5, 6}, {}

2.4.3 Incidence List

An incidence list representation of a graph takes the idea of the adjacency list but encodes more
information into each of the n = |V | lists, such as the weights or labels of the edge of a graph.
An incidence list consists of n lists, with the ith list containing the set Ai of ordered pairs (e′, vj),
such that, (vi, vj) ∈ E and (vi, vj) has edge label (or weight) e′. That is, an incidence list on a
directed multigraph G on a vertex set V (as in Jungnickel 2013 [25, p. 39]) is defined by:

1. n = |V |.

2. A1, ..., An, where Ai is a list of all ordered pairs (e′, j) which are incident from vertex vi
and have endpoint vertex vj with edge label e′.

Storing a graph as an incidence list with integer edge weights, requires space for 2|E| integers;
two for each edge. The graphs G1 and G2 as in figure 2.17 and figure 2.18 can represented
respectively as an adjacency list as follows:

Example Incidence Lists

Figure 2.7
{(7, 1), (0.25, 2), (1, 4)}, {(0.25, 1), (1, 3), (2, 3), (3, 4)},
{(1, 2)(2, 2)(1, 4)}, {(1, 1)(3, 2)(1, 3)}, {}, {(0.5, 7)}, {(0.5, 6)}

2.4.4 Adjacency Matrix

The adjacency matrix AG is a square matrix of size n = |V |, with each entry aij being equal to
one if the edge (vi, vj) ∈ E and zero if (vi, vj) ̸∈ E. This report will only consider adjacency
matrices of simple graphs. However, the definition of the adjacency matrix can also be extended
to incorporate multigraphs (and weighted simple graphs) by defining each entry aij to be equal
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to the number of edges (vi, vj) ∈ E (or the weight of (vi, vj)). All adjacency matrices for simple
graphs are symmetric.

Storing an adjacency matrix requires space for |V |2 integers. This is the largest representation
for simple graphs when compared to the edge list and adjacency list. However this representation
allows for some very quick computation of some problems. Computing the degree sequence of
a graph is trivial when using an adjacency matrix as the degree of vertex vi is simply the entry
aii of the matrix A2

G (Proof of which can be found in Jungnickel 2013 [25, p. 108]). Take for
example G1 as in figure 2.17, its adjacency matrix is given as follows:

AG1 =



0 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0


(2.5)
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Chapter 3

Algorithms and Complexity
Theory

3.1 Basic Algorithms

Within graph theory, the use of theorems and conjecture is not always enough to solve problems.
The computational methods can be split into two main categories, non-deterministic methods
such as Monte Carlo Simulation, and deterministic methods, such as Linear Programming. These
methods are often employed to find solutions to problems which require more than simply a yes
or no answer. This report will focus on the deterministic computational methods for solving
problems through the use of algorithms as these allow for a more analytical approach to solving
complex problems, using the solutions to previously studied problems. As presented in Jungnickel
2013 [25, p. 36], the techniques and steps taken to solve a problem is called an algorithm if the
following criteria hold true:

1. Finite description - The technique only takes finite text to be explained.

2. Effectiveness - The technique and all steps involved are feasibly possible (and gives correct
solution).

3. Termination - The technique is guaranteed to stop after a finite number of steps.

4. Determinism - Given the exact same input the technique will perform the exact same steps
(no random steps).

These criteria hold if and only if each step in an algorithm satisfies the criteria of an algorithm.
These criteria help to separate techniques which are inefficient. A finite description allows for
good communication of the technique. Effectiveness ensures that techniques are possible and
that the algorithm will always give the correct solution. Then termination, a very desirable
property, ensures that any valid input will processed correctly without causing the algorithm to
get stuck during calculation. Termination is not a trivial property to have or to prove (See the
Halting problem later in this chapter). Therefore, all algorithms in this report will be constructed
to be terminating, as will be seen later in this report constructing an algorithm to terminate
for some inputs may not imply that the algorithm will always terminate for all inputs. Finally,
determinism allows for analysis of the steps within an algorithm, an algorithm should take the
same steps for the same input data every time.
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3.1.1 Graphic Algorithm

As seen in the previous chapter with degree sequences, the Erdős-Gallai Theorem can very quickly
determine whether a degree sequence is graphic. But this method does not give any indication
of how to form a simple graph with such a graphic degree sequence. A shallow technique for
solving this problem would be the following:

Step 1 If the Erdős-Gallai Theorem holds for D, then Go-to Step 2. Otherwise Stop; D is not
graphic.

Step 2 Generate a random graph with |V | equal to the cardinality of D, if the degree sequences
match, then Done. Otherwise repeat Step 2.

This techinque will very quickly give a negative response (if D is not graphic), but if D is
graphic, given enough time Step 2 will yield a solution. This technique does not define an
algorithm, although this technique will always find the correct answer it is not possible to say
how many steps it will take to generate the desired graph, nor is it possible to place an upper
bound on this time. Hence, it is unclear whether this technique will terminate and also fails the
determinism condition because of the random process in Step 2.

One such algorithm for solving the graph realization problem is the Havel–Hakimi algorithm
[28, p. 9-15]. This algorithm takes a different approach to solving this problem. First assuming
that a degree sequence is graphic, then attempting to build a graph using this degree sequence,
if that fails then, D is not graphic, but if it succeeds then not only is D graphic, the algorithm
will have generated a graph which realizes D in the process.

To begin such an algorithm the degree sequence must be manipulated by considering a se-
quence L = (l0, ..., lm) where m = δ(G), such that, each li contains a list of vertices with degree
equal to i. That is,

m = ∆(G), (3.1)

L = {li : li = {vj : deg(vj) = i, vj ∈ V }, i ∈ {0, ...,m}}. (3.2)

The graph will be built proactively throughout the algorithm, by adding edges to graph
consisting of n = |D| isolated vertices. As such the best representation to use in for this is an
edge list. Therefore, a set E will be used to keep track of the edges in the final graph. A list of
vertices will not need to be created as the algorithm will generate one.

The general idea for building the graph will be to consider the vertex with degree ∆(L)
(maximal non-empty indexed li ∈ L), then attach ∆(L) edges (with no determined endpoint)
to this vertex. In doing this, the vertex will need to be moved from l∆(L) to l0 as it has its
∆ edges. The ∆(L) edges with the undetermined endpoints must then join to the next ∆(L)
disjoint vertices with highest non-zero degree. If there are not enough vertices, then D is not
graphic, otherwise each edge should be added to E and the index of each vertex reduced in L by
one. If all vertices are in l0, then the graph has been generated and E and V = l0 then act as
the requirements for the edge list representation of a simple graph. Otherwise, this process can
be repeated until the graph is either generated or found not to exist.

To keep up with these operations another sequence L′ = (l′0, ..., l
′
m), will be used to stop the

possibility for two vertices sharing more than one edge. For any algorithm the initial value must
be noted and for the sets E and L′ these are as follows:

E = ∅ (3.3)

L′ = {l′j : l′j = ∅, j ∈ {0, ...,m}}. (3.4)

This algorithm can then be presented in more specific steps as follows:
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Step 1 In L find the none-empty list with the largest index. Set ∆(L) equal to the index of this
list. If ∆(L) = 0 then; the algorithm has been found a graph, the edge set E and the
set of vertex l0 define an edge list of a simple graph. Otherwise set α equal to the vertex
positioned at l∆(L),0 (the first vertex in l∆(L)), then remove l∆(L),0 from l∆(L), add the
vertex α to l0. Go-to Step 2.

Step 2 In L, find the none-empty list with the largest index. Set q equal to the index of this list.
If q = 0 then Stop; D does not define a simple graph. Otherwise set β equal to the vertex
at lq,0, add the edge (α, β) to E then set ∆(L) = ∆(L)− 1 and finally take lq,0 remove it
from lq and add the vertex β to l′q−1. Go-to Step 3.

Step 3 If ∆(L) = 0, Go-to Step 4. Otherwise Go-to Step 2.

Step 4 For every l′j ∈ L′, append each element of l′j into the respective lj ∈ L, (lj = lj ∪ l′j). Set
each l′j = ∅, Go-to Step 1.

These steps are also presented here in pseudo code:

Algorithm 3.1.1 Graphic Algorithm - Input : Degree Sequence (D). Output : Edge set (E)
and vertex set (V ) if the degree sequence is graphic; False otherwise.

1: procedure graphicalgorithm(D)
2: m← ∆(G) ▷ Highest value in D.
3: L← [ [ ]j : j ∈ {0, ...,m} ] ▷ m+ 1 empty lists.
4: for di ∈ D do
5: Ldi ← Ldi ∪ vi

6: E ← [ ]
7: L′ ← [ [ ]j : j ∈ {0,m} ]
8: while 1 ̸= 0 do ▷ Infinite loop - Step 1.
9: p← Largest j of none empty lj ∈ L ▷ p = ∆(L)

10: if p = 0 then
11: return E, l0 ▷ Algorithm successful.

12: α← lp,0
13: l0 ← l0 ∪ lp,0
14: lp ← lp \ lp,0
15: while p ̸= 0 do ▷ Step 3
16: q ← Largest j of none empty lj ∈ L ▷ Step 2.
17: if q = 0 then
18: return False ▷ Algorithm failed.

19: β ← lq,0
20: E ← E ∪ (α, β)
21: p← p− 1
22: l′q−1 ← l′q−1 ∪ lq,0
23: lq ← lq \ lq,0
24: for j ∈ {0, ...,m} do ▷ Step 4.
25: lj ← lj ∪ l′j
26: l′j ← [ ]j

In this report, any algorithm which has pseudo code is accompanied by an exact python im-
plementation, by the author, in the appendix. For the Graphic Algorithm: See Appendix A.2.
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3.1.2 Minimum Spanning Tree Algorithms

As discussed previously in this report, finding the minimum spanning tree of a system can both
increase efficiency and reduce the costs involved in running a system. The first of such algorithms
(Bor̊uvka’s Algorithm) to find the minimal spanning tree was discovered and published by Otakar
Bor̊uvka in 1926 [3] as a proposed solution to give the country of Moravia an efficient electricity
network [4]. His algorithm requires all edge weightings to be distinct, hence, this algorithm will
not be considered in this report, as a more general algorithm is required for modern systems.

The first of two notable algorithms is Prim’s Algorithm (Jarńık’s Algorithm); first developed
in 1930 by Vojtěch Jarńık [24] and later republished by Robert Clay Prim [33] and Edsger Wybe
Dijkstra [8] in 1957 and 1959 respectively. Prim’s Algorithm focuses on building the minimal
spanning tree progressively; starting the spanning tree from a single arbitrary vertex and joining
the tree to a new vertex via the lowest cost edge from any vertex currently within the tree. In
doing this, cycles are avoided as edges are only formed between new vertices and not between
vertices already in the tree. That is, given a connected weighted undirected graph G = (V,E)
with V = {v1, ..., vn} and weight function ω(vi, vj) for (vi, vj) ∈ E then the minimal spanning
tree GT = (VT , ET ) of G is determined by the following steps:

Step 1 Set ET = ∅, VT = {v1}.

Step 2 Find e ∈ E with minimal ω(u,w), for u ∈ VTandw ∈ V \VT . If no such e exists, Stop; the
minimal spanning tree GT = (VT , ET ) has been found. Otherwise, add e to ET and w to
VT , Go-to Step 2.

In pseudo code:

Algorithm 3.1.2 Prim’s Algorithm - Input: Connected weighted undirected graph G = (V,E)
with weight function ω. Output: Minimal spanning tree GT = (VT , ET ).

1: procedure prims(V , E, ω)
2: ET ← [ ]
3: VT ← [V [0] ] ▷ First vertex in V .
4: while True do ▷ Loops Forever.
5: minedge ← ∞
6: for u ∈ VT do
7: for v ∈ V \ VT do
8: if (u,w) ∈ E AND ω(u, v) < minedge then
9: uT ← u

10: wT ← w
11: minedge ← ω(u,w)

12: if minedge =∞ then ▷ No Edges found.
13: return VT , ET ▷ Minimal spanning tree GT = (VT , ET ).

14: ET ← ET ∪ [(uT , wT )]
15: VT ← VT ∪ [wT ]

Python implementation: See Appendix A.3.
Proof of correctness: See Dieter Jungnickel [25, p. 114].
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Figure 3.1: Prim’s Algorithm - G = (V,E) (black), GT = (VT , ET ) (blue), edges under consid-
eration (red).
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Another method for finding a minimal spanning tree is Kruskal’s Algorithm; first published
by Joseph Bernard Kruskal in 1956 [29]. This algorithm finds the minimal spanning tree of
G = (V,E), by first considering a forest GT with each vertex in G as a separate tree in this
forest. These trees are then progressively joined together by selecting the smallest edge in G
which joins two trees in GT (an edge which does not form a cycle in GT ). Once GT is a tree (and
no longer a forest), then GT is a minimal spanning tree of G. That is, given a connected weighted
undirected graph G = (V,E) with V = {v1, ..., vn} and weight function ω(vi, vj) for (vi, vj) ∈ E
then the minimal spanning tree GT = (VT , ET ) of G is be determined by the following steps:

Step 1 Set ET = ∅, VT = {v1, ..., vn} and let the set of trees in GT be given by, T = [[v1], ..., [vn]]
where ti ∈ T represents the vertices in the ith tree.

Step 2 Find e ∈ E with minimal ω(u,w), for u ∈ ti, w ∈ tj , i ̸= j. If no such e exists, Stop;
the minimal spanning tree GT = (VT , ET ) has been found. Otherwise, add e to ET , set
ti = ti ∪ tj , then delete tj , Go-to Step 2.

In pseudo code:

Algorithm 3.1.3 Kruskal’s Algorithm - Input: Connected weighted undirected graph G =
(V,E) with weight function ω. Output: Minimal spanning tree GT = (VT , ET ).

1: procedure kruskals(V , E, ω)
2: ET ← [ ]
3: VT ← V
4: T ← [ [v1], [v2], ..., [vn] ]
5: E.sort(ω) ▷ Sorts edges by weight smallest to largest.
6: while E ̸= ∅ do
7: i← {i : E[0][0] ∈ ti} ▷ E[0][0], the starting point of the first edge.
8: j ← {j : E[0][1] ∈ tj} ▷ E[0][1], the endpoint point of the first edge.
9: if i = j then ▷ If both endpoints are in the same tree.

10: Delete E[0]
11: else
12: ET ← ET ∪ E[0]
13: Delete E[0]
14: ti ← ti ∪ tj ▷ E[0][0] ∈ ti and E[0][1] ∈ tj .
15: Delete tj

16: return VT , ET ▷ Minimal spanning tree GT = (VT , ET ).

Python implementation: See Appendix A.4.
Proof of correctness: See Jungnickel 2013 [25, p. 116-117].
Using very different approaches, both of these algorithms succeed in finding a minimal span-

ning tree. One may ask which algorithm is best? It turns out that Kruskal’s algorithm is
more efficient than Prim’s algorithm; this will be discussed later in this chapter once the idea of
complexity has been introduced.

These algorithms highlight the importance of determinism; the minimum spanning tree may
not be unique for a given graph, take for example figure 3.1 and figure 3.2. These algorithms give
different minimal spanning trees not as a result of the differences in algorithm, but the arbitrary
choices between similar valued edges which occurs in both algorithms. Arbitrary choices pose a
problem in implementation; determinism dictates that the algorithm should always makes the
same choice when presented with more than one optimal choice. This problem is often solved by
considering a constant distinct value such as the label of a vertex.
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Figure 3.2: Kruskal’s Algorithm - G = (V,E) (black), GT = (VT , ET ) (blue), edges under
consideration (red).

All three algorithms (Bor̊uvka’s, Prim’s and Kruskal’s) are known as greedy algorithms; which
takes the optimal choice at each step in an attempt to find the overall optimal way to solve a
problem. Greedy algorithms are not always the best choice of algorithm; take for example figure
3.3, which presents the longest directed path problem. Starting the algorithm from vertex 1,
as starting the algorithm from another vertex will yield a directed path with a lower number of
edges, therefore a shorter directed path (as all weights are strictly positive); from here a greedy
algorithm would choose to take the edge of length 6 to vertex 2 instead of the edge of length 1
to vertex 3 (as this is the most optimal choice at this step) and then choose the edge of length 5
to vertex 4; this gives the longest path a length of 11. This is the incorrect answer as taking the
path (1, 3, 5) yields a path of length 91. This demonstrates the need for more complex techniques
for determining the optimal solution which will be introduced later in this report.

12 3

4 5

6 7

6 1

5
1

90
2

Figure 3.3: Longest directed path problem - Greedy algorithm (red), actual longest path (blue).

3.1.3 Prüfer Code

As previously discussed, the methods for representing graphs allow for storage and communica-
tion of graphs. When considering only trees, a representation such as an adjacency matrix has
a lot of wasted space; resulting in more expensive storage and communication of the graph. If
a graph is assumed to be a tree, then a more efficient representation to use is the Prüfer code.
Discovered by Heinz Prüfer in 1918 [34], a Prüfer code is a list of |V | − 2 integers which encodes
any given tree with |V | > 2.
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C = [1, 1, 1, 1]
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C = [6, 5, 6, 1]

Figure 3.4: Example Prüfer codes.

A Prüfer code, denoted C, is formed for a given tree GT = (VT , ET ) (assuming |V | > 2),
with each vertex labelled by a distinct integer vi ∈ {1, ..., n}. First consider the lowest valued
leaf vi ∈ GT , find vj adjacent to vi; add vj to the end of the Prüfer code C, then remove vi from
GT . Continue this process of finding the lowest valued leaf vi and appending vj adjacent to vi
to C then removing vi until only two vertices remain in GT . That is,

Step 1 Set C = ∅.

Step 2 If |VT | = 2, Stop; C is the desired Prüfer code. Otherwise; find min{i : deg(vi ∈ V ) = 1}
then find {j : vj adjacent to vi}. Append j to the end of C then remove vi from GT . Go-to
Step 2.

In pseudo code:

Algorithm 3.1.4 Prüfer Code - Input: A tree GT = (VT , ET ) given as adjacency matrix AGT

(|V | > 2). Output: Prüfer code (C).

1: procedure prufercode(AGT
)

2: A← AGT

3: D ← [A2
i,i : i ∈ {1, ..., |VT |}]

4: C ← [ ]
5: while

∑
D > 2 do

6: for i ∈ {1, ..., |D|} do
7: if di = 1 then
8: di = 0
9: for j ∈ {1, ..., |D|} do

10: if Ai,j = 1 then
11: C ← C ∪ j
12: di ← di − 1
13: Ai,j ← 0
14: Aj,i ← 0
15: Break

Break
16: return C

Python implementation: See Appendix A.5.

Theorem 3.1.1. For a given tree GT = (VT , ET ) on n vertices, algorithm 3.1.4 will encode GT

into a unique Prüfer code of size n− 2.

Proof. See Jungnickel 2013 [25, p. 11].
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Similarly, given Prüfer code of size n − 2 the steps of algorithm 3.1.4 can be performed in
reverse to construct a tree on n vertices. That is,

Step 1 Set n = |C|+ 2, VT = {v1, ..., vn}, i = 1.

Step 2 Generate a degree sequence D, where the degree of each vertex is the number of times the
vertex appears in C plus 1.

Step 3 If i = n + 1, Go-to Step 4. Otherwise, find the first lowest-numbered vertex, vj , with
degree equal to 1 in D, add the edge (vj , ci), ci ∈ C to the tree GT , decrease the degrees
of vj and ci by 1 in D, then increase i by 1, Go-to Step 3.

Step 4 Two vertices u, v ∈ V with degree 1 will remain in D, add the edge (u, v) to the tree GT .

In pseudo code:

Algorithm 3.1.5 Prüfer Decode - Input: Prüfer code (C). Output: A tree GT = (VT , ET )
given as adjacency matrix (A).

1: procedure pruferdecode(C)
2: n← |C|+ 2
3: A← 0n×n ▷ Zero matrix of size n.
4: D ← [ di = 1 : i ∈ {1, ..., n} ]
5: for i ∈ C do
6: di ← di + 1

7: for i ∈ C do
8: for j ∈ {0, ..., n} do
9: if dj = 1 then

10: Ai,j ← 1
11: Aj,i ← 1
12: di ← di − 1
13: dj ← dj − 1
14: Break
15: for j ∈ {0, ..., n} do
16: if dj = 1 then
17: for i ∈ {j + 1, ..., n} do
18: if di = 1 then:
19: Ai,j ← 1
20: Aj,i ← 1
21: Break
22: Break
23: return A

Python implementation: See Appendix A.5.

Theorem 3.1.2. Let C = (c1, ..., cn−2) be an ordered sequence with ci ∈ VT = {v1, ..., vn}. Then
C is a Prüfer code which is decoded by algorithm 3.1.5 into a unique tree GT = (VT , ET ) on n
vertices.

Proof. See Jungnickel 2013 [25, p. 11].

Theorem 3.1.3. There exists a bijective mapping between the set of trees on n vertices and the
set of Prüfer codes of size n− 2, for all n ∈ Z, n ≥ 2.
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Proof. Theorem 3.1.1 implies that there is an injective mapping from the trees on n vertices to
Prüfer codes of size n−2. Similarly theorem 3.1.2 implies there is an injective mapping from the
Prüfer codes of size n− 2 to trees on n vertices. Hence, there exists a bijective mapping between
the set of trees on n vertices and the set of Prüfer codes of size n− 2.

Corollary 3.1.1. The number of trees on n vertices is equal to the number of Prüfer codes of
size n− 2.

Heinz Prüfer first used his code in 1918 [34] as an alternative proof to following formula; first
discovered in 1860 by Carl Wilhelm Borchardt [1] and later expanded on by Arthur Cayley [5]
in 1889 , from which the formula gets its name:

Theorem 3.1.4. (Cayley’s formula) The number of trees on n labelled vertices is nn−2.

Proof. The number of Prüfer codes of size n − 2 on n vertices is nn−2 (n choices for n − 2
elements). Then by corollary 3.1.1, the number of trees on n vertices is also nn−2.

A theoretical system which stores trees using a Prüfer code would need to decode them into a
more standard representation so that standard operations and analysis can be performed. This
adds to the complexity and expense of an algorithm. Therefore in the real world there are very
limited practical applications of the Prüfer code, systems opting for a representations such as
an edge list instead. This code does however highlight the usage of different representations to
discover underlying properties of more general graphs. This idea of using non-standard repre-
sentations, will prove to be a powerful tool when considering more complex problems later in
this report.

3.1.4 Halting Problem

It may be intuitive to think that for any problem, given enough time, an algorithm (which may
not yet be discovered) can find a solution to that problem. Unfortunately, it turns out that
for some problems an algorithm simply cannot exist. One such problem is the halting problem,
which asks, for a given arbitrary algorithm X and an input Y , whether X will terminate (halt)
or continue to run forever with input Y . This decision problem was shown by Alan Turing [37] to
be undecidable, that is, there is no general algorithm which leads to a correct yes or no answer.

Theorem 3.1.5. The halting problem is undecidable.

Proof. Assume that there exists an algorithm A, which solves the halting problem. The algorithm
A takes two inputs, an algorithm X and an input Y , returning TRUE if the input Y causes X
to halt, or FALSE if this input Y causes X to never terminate. Now consider the algorithm A′

(figure 3.5); this algorithm takes the output of algorithm A and loops forever if A returns TRUE,
otherwise A′ will halt.

Does input Y halt algorithm X?

A

X

Y

Loop

Halt

TRUE

FALSE

Figure 3.5: The algorithm A′.

By assumption algorithm A can determine if the algorithm A′ will halt for any given input.
However, consider X = A′ and Y = A′ as inputs to algorithm A′. If the input A′ halts algorithm
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A′ then algorithm A will return TRUE, hence A′ will loop forever contradicting the output of
algorithm A. Similarly if input A′ causes algorithm A′ to loop forever then algorithm A will
return FALSE, hence A′ will halt contradicting the output of algorithm A. The algorithm A
therefore cannot exist and the halting problem is undecidable.

3.2 Complexity Theory

The notation and content of this section closely follow that of Jungnickel 2013 [25, p. 46-51].
As introduced by Jungnickel 2013 [25, p. 53], there are three main types of problem which

this report will focus on within complexity theory, decision problems, evaluation problems and
optimisation problems. Decision problems aim to give a yes or no answer to a problem, these are
used in situations where knowing a solution exists, rather than the solution itself, is sufficient,
much like deciding if a degree sequence is graphic. Evaluation problems ask for the value of
an optimal solution without specifically requiring the exact solution to be obtained. Take for
example obtaining the weight of a minimal spanning tree without actually obtaining the minimal
spanning tree, it may not be obvious how this can be achieved however later in this report, max-
min relations will give the means to relate problems for evaluation. Each evaluation problem
gives rise to a decision problem, mainly, is the value of the evaluation problem equal to the value
of the optimal solution? Finally, optimisation problems focus on finding the optimal solution to
a problem, given a certain set of criteria. Each optimisation problem induces a decision problem,
mainly, is there a more optimal solution? Finding a solution to an optimisation problem implies
the solution to both the associated evaluation problem and decision problem. Later in this
report, two main optimisation problems will be covered, mainly, the maximal flow problem and
the edge connectivity augmentation problem.

3.2.1 Types of Complexity

This report will focus on two main types of complexity; the first, space complexity, is the measure
of the storage cost of data during the operation of algorithm. The second, time complexity, is
a measure of how many operations an algorithm must perform before it will terminate. For
any given algorithm the time complexity will always be at least equal to the space complexity,
as data must be written to memory before it can be accessed by an algorithm. The idea of
space complexity has already been introduced for different representations of graphs. Some
representations, such as adjacency matrices required a large array of size |V |2 for storage, on the
other hand an edge list only requires 2|E|+ 1 integers.

3.2.2 Measuring Complexity

Often it is the case that the complexity of an algorithm cannot be assigned an exact value. For
some inputs the running time of an algorithm may be small, but for others it may not even
terminate. Therefore, the growth in complexity of an algorithm can be estimated by considering
another function g : N 7→ R+ which can then be related to the complexity of the algorithm f(n)
(as in Jungnickel 2013 [25, p. 47]) using the following notation,

f(n) = O(g(n)), if ∃ c > 0 : f(n) ≤ cg(n), for all n sufficiently large, (3.5)

f(n) = Ω(g(n)), if ∃ c > 0 : f(n) ≥ cg(n), for all n sufficiently large, (3.6)

f(n) = Θ(g(n)), if f(n) = O(g(n)) and f(n) = Ω(g(n)). (3.7)

26



It is said that f has rate of growth g(n) if f(n) = Θ(g(n)). Similarly f is said to have rate
of growth at most g if f(n) = O(g(n)) and f has rate of growth at least g if f(n) = Ω(g(n)).

Given an algorithm A, with time or space complexity O(g(n)), then A is said to have com-
plexity O(g(n)).

3.2.3 Complexity of Minimum Spanning Tree Algorithms

As seen with Prim’s and Kruscal’s algorithms for minimal spanning trees, a given problem can
have multiple algorithms which realize a solution. Studying the complexity of these algorithms
determines which algorithms will be most efficient for a given input. Consider the algorithms of
Prim and Kruscal; the time complexity of these algorithms is the following,

Theorem 3.2.1. Given a connected weighted graph G = (V,E), Prim’s Algorithm can find a
minimal spanning tree of G with time complexity O(|V |2).

Proof. To build the edge set for a minimal spanning tree of G, Step 2 in the algorithm must
run |V | times. During each iteration of Step 2 at most |V | − |VT | comparisons of edge weights
are required. Hence, the algorithm has time complexity O(|V |2).

Theorem 3.2.2. Given a connected weighted graph G = (V,E), Kruscal’s Algorithm can find a
minimal spanning tree of G with time complexity O(|E| log(|E|)).

Proof. The edges of a given graph G = (V,E) can be sorted by weight with time complexity
O(E log(E)) using a merge sort algorithm [7]. From this sorted list, the minimal spanning
tree can be constructed with time complexity O(E). Hence, the algorithm has time complexity
O(|E| log(|E|))

By computing these complexities, it then follows that, in a worst case scenario Kruscal’s Al-
gorithm will be more efficient than Prim’s Algorithm. That is not to say that Kruscal’s algorithm
will always yield a faster result, or that any implementation of Kruscal’s and Prim’s algorithm
will run with time complexity O(|E| log(|E|)) and O(|V |2) respectively. This all depends on the
data structures used and which graph representation is given to the algorithm. For instance if
an adjacency matrix is used, the space complexity of both algorithms is O(|V |2), hence both
algorithms will have time complexity O(|V |2) as in both cases, the adjacency matrix must be
written into the computers’ memory before the algorithm can begin.
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Chapter 4

Flow Networks

This chapter will examine a special type of digraph called a flow network. A flow network
N = (G, c, s, t) is defined by a digraph G = (V,E) with vertex set V which contains a source s
and a sink t. Each edge e ∈ E, must also have a capacity, given by a function c : E 7→ R+

0 and
flow, given by a function f : E 7→ R, which satisfies the following criteria (as given in Ibaraki
and Nagamochi 2008 [23, p. 20-21]) for all e ∈ E,

0 ≤ f(e) ≤ c(e), (4.1)

∑
e+=v

f(e−, e+)−
∑
e−=v

f(e−, e+)


= 0 v ̸= s, t ∈ V,

≥ 0 v = s,

≤ 0 v = t.

(4.2)

As stated previously, e− and e+ denote the starting endpoint and final endpoint of the directed
edge e, respectively.

Equation 4.1 is known as the feasibility condition of a flow network and equation 4.2 is known
as the flow conservation condition; with any flow which satisfies these conditions is called a feasible
flow. The feasibility condition dictates that the flow must be none-negative and cannot exceed
the capacity of a given edge. The flow conservation condition dictates that flow is preserved for
all vertices, except the source s, where flow is being introduced to the system, and the sink t,
where the flow is being taken out of the system. When flow is measured in opposing direction
to an edge this results in a negative net flow, that is,

f(e−, e+) = −f(e+, e−). (4.3)
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Figure 4.1: Flow network - Each edge labelled c(e) : f(e).
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Aside: In the real world, electricity networks follow Kirchhoff’s Circuit Laws [17, p. 797].
The first of these laws, Kirchhoff’s Current Law (Kirchhoff’s Vertex Law), which says the sum
of currents meeting at a point is zero. By considering all vertices, expect for the sink and the
source, in a flow network, this is exactly the flow conservation condition.

4.1 Maximum Flow

Flow networks describe the movement of units from one destination to another. The natural
question which follows is then what is the maximal flow. This section focuses on presenting a
method to find the distribution of flow units which gives this maximum flow through a network.
This distribution will later be exploited through the use of elegant max-min relations to solve
seemingly unrelated problems in flow and connectivity. In particular, calculating the connectivity
invariats in the next chapter.

A bound on the maximum flow can be established using the idea of a cut on a flow network.
A cut (S, T ) of a flow network N = (G, c, s, t) is a partition of V such that s ∈ S, t ∈ T with f a
feasible flow on N . Cuts have capacity denoted c(S, T ) and flow, denoted f(S, T ), defined as,

c(S, T ) =
∑

e−∈S,e+∈T

c(e), (4.4)

f(S, T ) =
∑

e−∈S,e+∈T

f(e)−
∑

e+∈S,e−∈T

f(e). (4.5)

Hence, the flow of a cut (S, T ) is the net amount of flow moving from the set of vertices S to the
set of vertices T . When considering a maximum flow, the distribution will not actively change
hence, the amount of flow units into (and out of) the system will remain a constant value; this
value is known as the value of flow, denoted w(f). Given a flow network N = (G, c, s, t) and f
a feasible flow, then the value of flow, w(f) is defined as follows,

w(f) =
∑
e−=s

f(e)−
∑
e+=s

f(e) =
∑
e+=t

f(e)−
∑
e−=t

f(e). (4.6)

This definition for the value of flow, then implies that w(f) = f({s}, V \ {s}) = f({s}, V ). In
fact the following lemma shows the value of flow and the flow of a cut are one and the same.

Lemma 4.1.1. For any cut (S, T ) of a flow network N with feasible flow f , then w(f) = f(S, T ).

Proof.

f(S, T ) = f(S, V )− f(S, S),

= f(S, V ),

= f({s}, V ) + f(S \ {s}, V ),

= f({s}, V ),

= w(f).

Therefore, the flow of any (S, T ) cut is a constant. If a minimum upper bound for the flow
of a (S,T) cut is found then this is the maximum possible value of flow. That is,

Theorem 4.1.1. The value of any flow w(f) is bounded above by the capacity of any cut c(S, T ).
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Proof.

w(f) = f(S, T ),

=
∑

e−∈S,e+∈T

f(e),

≤
∑

e−∈S,e+∈T

c(e),

= c(S, T ).

Note that the value of flow being equal to the capacity of a cut, w(f) = c(S, T ), is achievable
if and only if each edge e with e− ∈ S and e+ ∈ T is saturated (f(e) = c(e)), whereas each edge
e with e+ ∈ S and e− ∈ T is void (f(e) = 0). Another consequence of theorem 4.1.1 is that if
there exists a flow such that f(S, T ) = c(S, T ) for any cut (S, T ) then this flow is maximal with
value w(f) and the cut (S, T ) has minimal capacity. This consequence is known as the Max-Flow
Min-Cut Theorem, which was proven by Lester Randolph Ford Jr. and Delbert Ray Fulkerson
[16] in 1956. Formally,

Theorem 4.1.2. (Max-Flow Min-Cut Theorem). The maximal value of a flow on a flow
network N is equal to the minimal capacity of an (S, T ) cut on N .

Proof. Suppose that w(f) is maximal with w(f) = c(S, T ), for some cut (S, T ). If c(S, T ) was
not minimal, then there exists some cut (S′, T ′) for which c(S′, T ′) < c(S, T ) = w(f), but this
contradicts theorem 4.1.1, hence c(S, T ) must be minimal. Now consider w(f) is maximal with
w(f) < c(S, T ), for c(S, T ) minimal. But as w(f) < c(S, T ), there must be either some edges
from S to T which are not saturated, or some edges from T to S which are not void. Therefore,
w(f) can be increased, but this is a contraction as w(f) is maximal.

This theorem then gives a shallow method for calculating the maximum flow; simply calculate
the min(c(S, T )) for all possible (S, T ) cuts. This method does not give any indication of how a
system with maximum flow would have its flow distributed in the network nor is it efficient.

To begin formulating an effective algorithm to find the exact distribution of a maximal flow
network, consider a path P from s to t which can travel in any direction along a directed edge.
If an edge e is in the direction of P , then e is called a forward edge, similarly if an edge e opposes
the direction of P , then e is called a backward edge. Increasing the flow from s to t along such a
path, works towards determining a maximum flow distribution.

Assuming that the source, s, has an infinite supply of flow units; their are three ways to
increase the flow of units from s to t, along such a path P , while maintaining the feasibility
condition. If P contains only forward edges, with all edges satisfying f(e) < c(e), then flow
along these edges can be increased by adding the smallest difference between the flow and the
capacity of each edge in P , that is, min{r(e) : r(e) = c(e) − f(e), e ∈ P} (r(e) is called the
residual capacity of the edge e).

If P contains only backward edges, with all edges satisfying f(e) > 0, then the flow of this
path can be increased by reducing the flow value of each edge by the minimum flow of any edge
in P , that is, min{f(e) : e ∈ P}.

If P is a combination of forward edges (e ∈ Pforward) and backward edges (e ∈ Pbackward), with
every forward edge satisfying f(e) < c(e), and backward edge satisfying f(e) > 0, then increasing
the flow can be done by applying a combination of both increasing flow in forward edges and
reducing flow in backward edges by the minimum of the following quantities: min{r(e) : e ∈
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Pforward} and min{f(e) : e ∈ Pbackward)}. Such paths for which flow can be increased are called
flow augmenting paths. That is, given a flow network N = (G, c, s, t) and feasible flow f , then
a path P from vertex s to vertex t is said to be a flow augmenting path with respect to f , if
f(e) < c(e) holds for every forward edge e ∈ P and f(e) > 0, for every backward edge e ∈ P .

Using these three methods for increasing flow, an augmented flow f∗ is defined by,

φ(P ) = min{min{r(e) : e ∈ Pforward},min{f(e) : e ∈ Pbackward}}, (4.7)

f∗(e) =


f(e), if e /∈ P,

f(e) + φ(P ), if e ∈ Pforward,

f(e)− φ(P ), if e ∈ Pbackward.

(4.8)

Note: The quantity in equation 4.7 is denoted φ(P ) instead of δ(P ), as is conventional in
literature, to avoid confusion with δ(G).

Theorem 4.1.3. The augmented flow f∗, maintains a feasible flow on N .

Proof. See Kocay and Kreher 2013 [28, p. 166-167].
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Figure 4.2: Initial flow distribution (left), augmenting path (blue) with φ(P ) = 1. Augmented
flow (right).

Theorem 4.1.4. (Augmenting Path Theorem). A feasible flow f , on a flow network N =
(G, c, s, t) is maximal if and only if there are no augmenting paths with respect to f .

Proof. (Based on Ford and Fulkerson 1956 [16]) Assume that f is a maximal flow. Suppose
an augmenting path P exists. Then φ(P ) > 0 by the definition of augmenting path and f∗

can be applied to the flow. By theorem 4.1.3, f∗ defines a feasible flow with value w(f∗) =
w(f) + φ(P ) > w(f), this is a contradiction as w(f) is assumed to be maximal. Now, assume
there are no augmenting paths in the network N with feasible flow f . Then there must exist
an (S, T ) cut such that each forward edge in the set-cut is saturated and each backward edge is
void. Then theorem 4.1.1 implies w(f) = c(S, T ) therefore f is maximal.

Finding flow augmenting paths then applying f∗ to the network, forms the basis of a method
to find the maximal flow distribution; first presented in 1956 by Lester Randolph Ford Jr. and
Delbert Ray Fulkerson [16]; the following steps determine the maximal flow for (integral and
rational) flow networks:

Step 1 Set the flow to the zero flow, that is f(e) = 0 for all e ∈ E.

Step 2 Find an augmenting path P in N and update the flow by applying f∗(e). If no augmenting
path exists Stop; maximal flow has found. Otherwise Go-to Step 2.
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This technique is referred to as the Ford-Fulkerson Method. Named a method and not an
algorithm as the act of finding an augmenting path is not trivial. In the same 1956 paper [16],
Ford and Fulkerson outline a more precise algorithm which details how an augmenting path may
be found, mainly the Ford-Fulkerson Labelling Algorithm.

4.2 Ford-Fulkerson Labelling Algorithm

As will be demonstrated in the next section, this algorithm by Ford and Fulkerson is not guar-
anteed to terminate for all inputs. The following theorem ensures that as long as a flow network
is integral or rational in its capacities, the proceeding algorithm will terminate,

Theorem 4.2.1. (Intergral Flow Theorem). Let N = (G, c, s, t) be a flow network where
all capacities c(e) are integers. Then there is a maximal flow on N such that all values f(e) are
integral.

Proof. (Based on Ford and Fulkerson 1956 [16] and Jungnickel 2013 [25, p. 166]) First consider
the zero flow, f(e) = 0 for all e; if this is the maximal flow then the value of flow is an integral
flow on N, with value 0. Otherwise, by theorem 4.1.4, there exists an augmenting path P with
respect to f . Then φ(P ) is a positive integer as all capacities are integer, therefore the flow
f ← f∗, must also be integral with value φ(P ). If f is not maximal then augmenting paths can
be found and value of flow increased in the same way. As the value of the flow is increased by
φ(P ) > 0 (a positive integer) and theorem 4.1.1 dictates the capacity of any cut is an upper
bound on the value of the flow, then a finite number of steps achieves an integral flow f with no
augmenting paths which by theorem 4.1.4, dictates that the flow f is maximal.

Theorem 4.2.1 dictates that an integral maximal flow exists. However, a non-integral maximal
flow may also exist for a given network. Theorem 4.2.1 also implies that a network with all
rationals capacities has a maximal flow with all values f(e) rational which can be found in finite
steps. By considering scaling all capacities by a value γ ∈ Q such that γc(e) are integral, then
by theorem 4.2.1 an integral maximal flow exists which can then be scaled by γ−1 to obtain a
maximal flow for the original rational network. Theorem 4.2.1 supports the algorithm; if there
were no integral solution the algorithm would never terminate under the integer operations of
f∗.

The general idea of this algorithm is to form an augmenting path through the network, by
testing routes to the sink using only edges which can have their flow increased. Starting with
the zero flow, label the source with (−,−,∞), then look at all of the edges incident at the source
to an unlabelled vertex (initially all other vertices will be unlabelled). If any forward edges are
not saturated or backward edges void, then choose one of these edges to the connected vertex vj .
Label vj with (vi,+/−, Rj) where vi is the previous vertex, +/− is the type of edge traversed
(+ : Forward, − : Backward) from vi. Rj is then the minimum of Ri and the amount the flow
can be increased along the traversed edge φ(e). For example, the label for a vertex v2, (s,+, 5)
means vertex v2 is reached via vertex s along a forward edge with maximal possible flow increase
5. Repeat this process of labelling by moving along edges where flow can be increased to an
unlabelled vertex until the sink is labelled. If at any stage no such edges exist from the current
vertex, backtrack to the previous vertex. If the algorithm is at the source and cannot find any
edges to unlabelled vertices which can have flow increased before labelling the sink, then the
flow is maximal. Otherwise, once the sink is labelled, an augmenting path with φ(P ) = Rt can
be formed in reverse by reading the label at the sink to obtain the previous vertex and the type
of edge needed to traverse to the sink. The label of the previous vertex can then be read to
obtain the next previous vertex and associated type of edge traversed. This process of reading
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the labels and adding the edge to the augmenting path occurs until the algorithm gets back to
the source. The flow can be increased along the augmenting path by applying f ← f∗. All the
labels are then removed and the algorithm starts again by labelling the source with (−,−,∞);
repeating until maximal flow is found. That is,

Step 1 Set f(e) = 0 for all e.

Step 2 Label s with Ls = (−,−,∞), (i.e. Ls[0] = −, Ls[1] = −, Ls[2] =∞) . Let vi = s.

Step 3 Find an unlabelled vj , such that, the forward edge e = (vi, vj) ∈ E has r(e) = c(e)−f(e) >
0 or the backward edge e = (vj , vi) ∈ E has r = f(e) > 0. If no such vj exists, Go-to Step
4. Otherwise; label vj with Lvj = (vi,+/−,min(r, Lvi [2])), giving + if e is a forward edge
and − if e is a backward edge, set vi = vj then Go-to Step 5.

Step 4 If vi = s, Stop; the flow f on N is maximal. Otherwise; set vi = Lvi
[0], Go-to Step 3.

Step 5 If vi = t, Go-to Step 6. Otherwise; Go-to Step 3.

Step 6 Set P = [ ] and φ(P ) = Lt[1]. Go-to Step 7.

Step 7 If vi = s, apply f(e) ← f∗(e), remove all labels, Go-to Step 2. Otherwise, if Lvi [1] = +
then add the edge (vi, Lvi [0]) to P , else; Lvi [1] = − so add the edge (Lvi [0], vi) to P . Set
vi = Lvi [0], Go-to Step 7.

Theorem 4.2.2. In an integral flow network the Ford-Fulkerson Labelling Algorithm finds the
the distribution of flow units which realizes a maximal value of flow f , with time complexity
O(|E|f).

Proof. An augmenting path is found in O(|E|) time complexity. For an integral flow network
each augmenting path increases the flow of the network by at least 1. Therefore, the algorithm
must find at most f augmenting paths, hence has time complexity O(|E|f).
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In pseudo code:

Algorithm 4.2.1 Ford Fulkerson Labelling Algorithm - Input: Directed graph N = (V,E),
capacity function (c), source node (s), sink node (t). Output: Flow distribution (f).

1: procedure MaxFlow(N, c, s, t)
2: for e ∈ E do f(e)← 0 ▷ Zero flow.

3: while True do ▷ Loop forever.
4: L ← [ [−,−,∞]s ] ▷ Label s.
5: i← s
6: while True do
7: for vj not labelled do
8: if (vi, vj) ∈ E and f(vi, vj) < c(vi, vj) then ▷ Forward Edge.
9: labels.append([vi,+,min(c(vi, vj)− f(vi, vj), Lvi [2])]vj ) ▷ Label vj .

10: i← j
11: break
12: else if (vj , vi) ∈ E and f(vj , vi) > 0 then ▷ Backward Edge.
13: L.append([vi,−,min(f(vj , vi), Lvi [2])]vj ) ▷ Label vj .
14: i← j
15: break
16: if vi = s then return f ▷ Flow is maximal

17: if vi = t then break ▷ Augmenting Path Found.

18: vi ← Lvi [0] ▷ Label vi.

19: φ← Lt[2] ▷ Maximal flow increase.
20: augPathForward ← [ ] ▷ Forward edges in path.
21: augPathBackward ← [ ] ▷ Backward edges in path.
22: while vi ̸= s do ▷ Generates the augmenting path.
23: vj ← Lvi [0]
24: if Lvi [1] = + then
25: augPathForward.append((vj , vi))
26: else
27: augPathBackward.append((vi, vj))

28: vi ← Lvi [0]

29: for e ∈ augPathForward do ▷ Augment forward edges
30: f(e)← f(e) + φ

31: for e ∈ augPathBackward do ▷ Augment backward edges
32: f(e)← f(e)− φ

Python implementation: See Appendix A.6.
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4.2.1 Cautionary Example

For integer and rational flow networks, the Ford-Fulkerson Method will always converge to the
maximal flow distribution. However, when working with irrational flow networks, the Ford-
Fulkerson Method requires some caution when choosing the augmenting path. This report will
not focus on a maximal flow algorithm for an irrational flow network (for this the reader is advised
to use the Edmonds-Karp Algorithm [10]), but instead will introduce an example presented by
Uri Zwich in 1995 [40], where the Ford-Fulkerson Method breaks down.

Theorem 4.2.3. The Ford-Fulkerson Method is not guaranteed to terminate for real valued
capacities. Moreover, the Ford-Fulkerson Method may converge to a value of flow not equal to
the maximal flow.

Proof. (Based on Zwich 1995 [40]) Consider the flow network as presented in figure 4.3 with:

r =

√
5− 1

2
. (4.9)

Then consider the sequence of augmenting paths as presented in the table below with integer
valued k ≥ 2 :

Path Number Path φ(P ) w(f)
1 [s, 1, 3, t] 1 1
2 [s, 4, 3, 1, 2, t] r 1 + r
3 [s, 1, 3, 4, t] r 1 + 2r
4 [s, 4, 3, 1, 2, t] r2 1 + 2r + r2

5 [s, 2, 1, 3, t] r2 1 + 2r + 2r2

...
...

...
...

4k − 2 [s, 4, 3, 1, 2, t] r2k−1 1+2r+ ...+2r2k−2+r2k−1

4k − 1 [s, 1, 3, 4, t] r2k−1 1 + 2r + ...+ 2r2k−1

4k [s, 4, 3, 1, 2, t] r2k 1 + 2r + ...+ 2r2k−1 + r2k

4k + 1 [s, 2, 1, 3, t] r2k 1 + 2r + ...+ 2r2k

The maximum value of flow is equal to 19, realized by 9 units via [s,4,t], 9 units via [s,2,t] and 1
unit via [s,1,3,t]. However, taking suggested sequence of augmenting paths (which can always be
taken [40]), then measuring the value of flow after the path 4k + 1 has been augmented, yields
the value of flow equal to:

w(f) = 1 + 2

2k∑
i=1

ri ≤ 1 + 2

∞∑
i=1

ri, (4.10)

= 3 + 2r,

< 5.

Therefore, this sequence of augmenting paths is infinite and does not converge to the maximal
value of flow of the network.
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Figure 4.3: Example of the Ford-Fulkerson Method on an irrational flow network.
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Chapter 5

Connectivity

Connectivity is a measure by which the robustness of a system (and its graph representation) can
be quantified and studied for weaknesses. This chapter will introduce the basic notions of vertex
and edge connectivity and give explicit steps in calculating these connectivity invaritants using
flow networks. Fundamental results related to the duality of vertex connectivity through Menger’s
Theorem and Whitney’s Theorem will also be studied in this chapter. Whitney’s Inequality will
then provides a relation between these two connectivity invariants and the minimal vertex degree.
This chapter will also demonstrate how graphs with specified connectives can be constructed.

5.1 Vertex Connectivity

The first measure of connectivity looks at the robustness of graphs where vertices take precedence.
Consider a graph G = (V,E), then a vertex-cut on G is any set of vertices SV ⊂ V such that
the induced sub-graph G \ SV is disconnected. It is not always the case that a vertex-cut exists,
take for example the complete graph on n vertices, Kn = (V,E). For any SV ⊂ V the induced
sub-graph Kn \ SV is connected (note: |SV | < |V | hence, the null graph is not considered.).
The vertex connectivity of a graph G, denoted κ(G), is defined as the minimal cardinality of all
vertex-cuts on G. If the set of vertex-cuts is the empty set, then vertex connectivity is defined
as, κ(G) = |V | − 1, the smallest number of vertices whose removal forms an induced sub-graph
with exactly one vertex.

Figure 5.1: Vertex-cut (red) onG with κ(G) = 2. Figure 5.2: κ(K6) = 5.

For a disconnected undirected graph G, κ(G) = 0. For any graph G with κ(G) ≥ 1, then G
is said to be 1-connected, likewise if G has κ(G) ≥ k, then G is said to be k-connected.

Given a graph G, with |V | ≥ 2, specific vertex connectivity of two non-adjacent vertices s, t ∈
V , denoted κ(s, t), is defined as the smallest cardinal of a vertex-cut SV ⊂ V \ {s, t} for which
the induced sub-graph G \ SV has s and t in different connected components (s is unreachable
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from t). If s and t are adjacent vertices then κ(s, t) is undefined; making s unreachable from t is
impossible as a vertex cut SV cannot remove the edge (s, t).

5.2 Edge Connectivity

Much like a vertex-cut, for a given graph G = (V,E) an edge-cut is any set of edges SE ⊆ E such
that the spanning sub-graph G \ SE is disconnected. If a graph G has exactly one vertex then
no edge-cuts exists. The edge connectivity of a graph G, denoted λ(G), is defined as the minimal
cardinality of all edge-cuts on G. If the set of edge-cuts is the empty set, then edge connectivity
is defined as, λ(G) = 0. If G is an undirected weighted graph, then the edge connectivity of G
is defined as the minimal weight of all edge-cuts SE on G.

Note: When considering the edge connectivity of weighted graphs this report will only con-
sider integral weight functions.

Figure 5.3: Edge-cut (red), λ(G) = 2. Figure 5.4: Edge-cut (red), λ(G) = 5.

For trivial graph or a disconnected undirected graph G, λ(G) = 0. For a graph G with
λ(G) ≥ 1, then G is said to be 1-edge connected, likewise if G has λ(G) ≥ k′, then G is said to
be k′-edge connected.

Given a graph G, with |V | ≥ 2, the specific edge connectivity of two vertices s, t ∈ V , denoted
λ(s, t), is defined as the smallest cardinality of an edge-cut SE ⊆ E for which the spanning
sub-graph G \ SE has s and t in different connected components (s is unreachable from t).

5.3 Computing Edge Connectivity

Earlier in this report, the Max-Flow Min-Cut Theorem gave a method for obtaining the minimal
capacity of a cut between two vertices within a flow network. An algorithm to compute the
edge connectivity of a graph takes advantage of this theorem by first transforming a given graph
G = (V,E) into a flow network N = (G, c, s, t); replacing each undirected edge in G with
two oppositely directed edges, both with capacity equal to one, this is called a zero-one flow
network. In forming this zero-one flow network, an (S, T ) cut in G which induces an edge-cut
has cardinality k′ if and only if c(S, T ) = k′ in N . Therefore, a minimal capacity cut in N
corresponds to a minimal edge-cut in G. Hence, the specific edge connectivity κ(s, t), s, t ∈ V ,
can be computed using a maximal flow algorithm (such as algorithm 4.2.1), to determine the
maximal flow distribution between s and t. Max-Flow Min-Cut Theorem then implies the value
of flow is then equal to the minimal edge-cut which separates s from t in G.

38



1

2

3

4

5

6

1

2

3

4

5

6

1:0

1:0 1:0
1:0

1:0

1:0

1:0

1:0

1:0
1:0

1:0

1:0

1:0

1:0

Figure 5.5: Undirected graph G, with corresponding zero-one flow network N .

Using this method for calculating specific edge connectivity, the edge connectivity of the
entire graph can be obtained using the following theorem by Claus-Peter Schnorr [35],

Theorem 5.3.1. Given a graph G = (V,E) with vertex set V = {v1, v2, ..., vn}.Then, with
vn+1 = v1:

λ(G) = min{λ(vi, vi+1) : i = 1, .., n}. (5.1)

Proof. Consider the graph G = (V,E), with vertices u and v such that λ(G) = λ(u, v) with
minimal (u, v) edge-cut X. Let S denote all vertices w ∈ V for which a path from u to w exists
and contains no edges in X. Similarly, let T = V −S. (S, T ) is a cut of G with u ∈ S and v ∈ T .
For all s ∈ S and t ∈ T , X is the minimal (s, t) edge-cut in G, that is λ(G) = |X| = λ(s, t).
Therefore, labelling each vertex, vi for i ∈ {1, 2, ..., n} with vn+1 = v1, there must exist an i such
that vi ∈ S and vi+1 ∈ T with λ(G) = λ(vi, vi+1).

Using theorem 5.3.1, an algorithm for computing edge connectivity follows,

Step 1 Given a connected graph G = (V,E), form a directed graph D = (VD, ED) with VD = V
and ED = {(u, v), (v, u) : (u, v) ∈ E}. Set n = |V |.

Step 2 Form a flow network N = (D, c, s, t) with c(e) = 1, for all e ∈ D. Set s = 1, t = n.

Step 3 Set λ = MaxFlow(N, c, s, t). Then, for each s ∈ {1, ..., n − 1}, set t = s + 1 and λ =
min(λ, MaxFlow(N, c, s, t)).

Step 4 The edge connectivity of G is then equal to λ.

In pseudo code:

Algorithm 5.3.1 Edge Connectivity - Input: Connected graph G = (V,E). Output: Edge
connectivity (λ(G)). Prerequisite: Algorithm to calculate maximal flow (MaxFlow(N,c,s,t)).

1: procedure lambda(G)
2: Convert G into directed graph D by replacing each e ∈ E with two directed edges.
3: Convert D into a network N with c(e) = 1 for all e ∈ ED.
4: s← 1
5: t← n
6: λ← MaxFlow(N, c, s, t)
7: for s← 1 to n− 1 do
8: t← s+ 1
9: λ← min(λ , MaxFlow(N, c, s, t))

return λ

Python implementation: See Appendix A.7.
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The edge connectivity of an integral weighted graph G = (V,E), with weight function w(e)
can be calculated by replacing each edge e ∈ E with w(e) edges; the resulting multigraph can
then have its edge connectivity calculated by algorithm 5.3.1.

Theorem 5.3.2. Given a connected graph G = (V,E), with s, t ∈ V . Using the Ford-Fulkerson
Labelling Algorithm, λ(s, t) can be calculated with time complexity O(|E|min{deg(s), deg(t)}).

Proof. The graph G can be transformed into the desired zero-one flow network with time com-
plexity O(|E|). Within a zero-one flow network, the maximal value of flow f between between
s and t is less than or equal to the minimal degree of s and t (in G). Hence, using the Ford-
Fulkerson Labelling Algorithm to calculate the maximal value of flow (equal to λ(s, t)), can be
done with time complexity O(|E|f) = O(|E|min{deg(s),deg(t)}) (by theorem 4.2.2).

Theorem 5.3.3. Given a connected graph G = (V,E) with maximal degree ∆(G). The edge
connectivity λ(G), can be calculated using the Ford-Fulkerson Labelling Algorithm with time com-
plexity O(|V ||E|∆(G)).

Proof. The graph G can be transformed into the desired zero-one flow network with time com-
plexity O(|E|). Theorem 5.3.1 dictates that to calculate λ(G), a calculation of λ(s, t) must be
performed |V | times. The time complexity of the calculation of λ(s, t) is at most O(|E|∆(G))
hence, calculating λ(G) has time complexity O(|V ||E|∆(G)).

Note: As presented by Jungnickel 2013 [25, p. 260]; for alternative maximal flow algorithms
the calculation of λ(s, t) can be shown to run in time complexity O(|V |2/3|E|) and the calculation
of λ(G) can be shown to run with time complexity O(|V ||E|).

5.4 Computing Vertex Connectivity

In a similar way to edge connectivity; vertex connectivity is computed using a flow network with
a specific structure. Once the flow network is in this structure, the Max-Flow Min-Cut Theorem
can be applied to obtain the specific vertex connectivity, which can then be related to the vertex
connectivity to the entire graph. This structure is more complex and is built around the idea of
internally (vertex) disjoint paths.

Given an undirected graph G = (V,E), with fixed s, t ∈ V , a set K = {p1, p2, ..., pk} of paths
pi = (v0, e1, ..., en, vn), with v0 = s and vn = t, s ̸= t. K is called a set of internally (vertex)
disjoint paths, if for any two paths in K, they have no vertices in common, other than s and t.
The maximal cardinallity of this set K will prove to be intrinsic to finding the vertex connectivity
and in fact will be shown to be equal to the specific vertex connectivity of s and t.

One method for obtaining the maximal number internally disjoint paths inside of a graph
is achieved by transforming the given graph into a flow network as presented in Ibaraki and
Nagamochi 2008 [23, p 34-35]. Take a connected graph G, then form the zero-one flow network N ,
as introduced for edge connectivity; by replacing every undirected edge in G with two oppositely
directed edges with capacity equal to one. Taking the maximal set of vertex disjoint paths K as
a set of augmenting paths in N (with strictly forward edges) may not be a full set of augmenting
paths which realize the maximal flow. Hence, the Max-Flow Min-Cut Theorem cannot be applied
to find the cardinality of K in this case. The problem here is that each vertex in N may have
more than one flow unit flowing through it in a maximal flow distribution. Therefore, if the
flow through a vertex can be limited to one flow unit, then the maximal set of vertex disjoint
paths will correspond to a set of augmenting paths which realize a maximal distribution. Then
as each path increases flow by exactly one flow unit, the maximal flow will equal the cardinality
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of K. Limiting the flow through a vertex in N can be achieved by splitting each vertex v in N
into two vertices v′ and v′′, joined by a single directed edge from v′ to v′′ with c(v′, v′′) = 1.
This edge is called the limiting directed edge. Each directed edge (u, v) in N is then replaced
with the edge (u′′, v′) with c(u′′, v′) = 1. The resulting flow network has no edges of the form
(v′, v′) or (v′′, v′′) hence, N∗ is bipartite, meaning the set of vertices can be partitioned into
two sets V ′ and V ′′, such that all edges have exactly one endpoint in each set. Formally (as in
Nagamochi and Ibaraki 2008 [23, p 34-35]), given the zero-one flow network N = (V,E, c, s, t)
then, N∗ = (V ′ ∪ V ′′, E′ ∪ E′′, c, s, t) with c(e) = 1 for all e in N∗ where,

V ′ = {v′ : v ∈ V }, (5.2)

V ′′ = {v′′ : v ∈ V }, (5.3)

E′ = {(u′′, v′) : (u, v) ∈ E}, (5.4)

E′′ = {(v′, v′′) : v ∈ V }. (5.5)

Then every path from s to t in G will have a corresponding path from s′′ to t′ in N∗. Similarly
an internally disjoint path in G will therefore have a corresponding internally disjoint path in
N∗. Then as a result of the limiting directed edge between v′ and v′′; all internally disjoint path
from s′′ to t′ in N∗ must be edge disjoint (that is, no two paths contain the same edge). Hence,
the minimal capacity cut of N∗, obtained by computing the maximal flow of the network N∗

between s′′ and t′ corresponds to the the maximal number of internally disjoint paths between
s and t in G.
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Figure 5.6: Undirected graph G (above) with corresponding N∗ (below) with edge capacities
equal to 1.
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5.4.1 Menger’s Theorem

For a connected graph G = (V,E) the maximal number of internally disjoint paths between two
non-adjacent vertices s, t ∈ V , is then related to the cardinality of a minimal vertex-cut using
the following theorem discovered by Karl Menger [30] in 1927,

Theorem 5.4.1. (Menger’s Theorem) Let G = (V,E) be graph, with non-adjacent vertices
s, t ∈ V . The maximum number of internally disjoint paths from s to t is equal to the minimal
cardinality of all vertex-cuts separating s and t.

Proof. Let the κ(s, t) be the minimal cardinality of a vertex-cut C separating s and t (s, t ̸∈ C)
and let α(s, t) denote cardinality of A, a set of internally disjoint paths from s to t. If κ(s, t) = k
and α(s, t) ≥ k+1, then at least k+1 s-t internally disjoint paths must pass through the vertex-
cut C. As κ(s, t) = k, pigeonhole principle dictates, that at least one vertex in C must belong to
at least two paths. However, this is a contradiction as the paths are no longer internally disjoint,
hence α(s, t) ≤ κ(s, t). Hence, if α(s, t) = κ(s, t) then α(s, t) is maximal.

This section of this proof is based on [42] aiming to prove by induction, that if κ(s, t) ≥ k
and α(s, t) is maximal then α(s, t) ≥ k. First consider κ(s, t) = 1, there exists a vertex-cut C
separating s and t. All paths from s to t must consist of at least one vertex from C, then as
|C| = 1, there exists only one vertex disjoint path from s to t so, α(s, t) = 1 (which is maximal).
Then assume that k ≥ 1 and if κ(s, t) ≥ k and α(s, t) is maximal then α(s, t) ≥ k. Now consider
that κ(s, t) ≥ k+1 and α(s, t) is maximal. The induction hypothesis states, there are k interally
disjoint s− t paths P1, P2, ..Pk. As κ(s, t) ≥ k + 1, the subsequent vertices to v in Pi (of which
there are k) are not a vertex-cut separating s and t hence, there is an s-t path P whose initial
edge is not in any Pi. Let x be the first vertex after s in P that belongs to some Pi. The choice
of P1, .., Pk and x are such that the size of the path from x to t is minimized within in the
induced subgraph G \ {s}. Then the subpath of P from s to x is Pk+1. If x = t then P1, ..., Pk+1

is the desired k + 1 internally disjoint paths. Otherwise x ̸= t, consider the induced subgraph
G \ {x}. By the induction hypothesis, there are k internally disjoint s-t paths Q1, ..., Qk in
G \ {x}. Assume that these paths have been chosen so that a minimum number of edges not
in any of the paths Pi. Let H be the graph consisting of the edges and vertices of the paths
Q1, ..., Qk and x (along with all edges incident from x to vertices in Q1, ..., Qk). Choose some Pj

(1 ≤ j ≤ k+1), whose initial edge is not in H. Then let y be the first vertex in Pj after s which
is in H. If y = t, then Q1, ..., Qk, Pj are k + 1 internally disjoint paths from s to t. Otherwise,
y ̸= t, then if y = x, let R be the shortest x-t path in G \ {s}. Let z be the first vertex in R
that is in some Qi. Then the size of the path in G \ {s} from z to t is less than the distance
from x to t. This contradicts the choice of P1, ..., Pk + 1 to minimize the size of path from x to
t. Hence, y ̸= x. If y is on some Qi, then the s-y subpath in Qi has at least one edge not in
any P1, ..., Pk+1 otherwise two paths from P1, ..., Pk+1 intersect at a vertex other than s,t or x.
If the s-y path in Qi is replaced by the s-y path in Pj , the choice of Q1, ...Qk, to minimize the
number of edges not in Pi is then contradicted. Therefore, either x = t or y = t. Therefore,
P1, ..., Pk + 1 or Q1, ..., Qk, Pj are k + 1 internally disjoint paths. As κ(s, t) = 1 implies α = 1
then if κ(s, t) ≥ k and α(s, t) maximal implies α ≥ k then κ(s, t) ≥ k + 1 and α(s, t) maximal
implies α(s, t) ≥ k + 1 for all positive integers k, by induction.

As α(s, t) ≤ κ(s, t), then if κ(s, t) = k and α(s, t) is maximal this implies κ(s, t) ≥ α(s, t) ≥ k
then, κ(s, t) = α(s, t) = k.

Therefore, by calculating the maximal flow in N∗ for any non-adjacent s′′ and t′, this will be
equal to the number of internally disjoint paths from s to t (non-adjacent) in G which Menger’s
Theorem dictates is equal to the specific vertex connectivity of the s and t.
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Menger’s Theorem does not directly link the specific vertex connectivity and the vertex con-
nectivity of the entire graph in the way theorem 5.3.1 did for edge connectivity, as it is unclear
how the interaction between adjacent vertices contributes to the overall vertex connectivity. How-
ever, in 1932, Hassler Whitney [38, 39] showed the following relation between vertex connectivity
and disjoint paths between all s and t,

Theorem 5.4.2. (Whitney’s Theorem) A graph G = (V,E) is a k-connected graph if and
only if there exists at least k internally vertex disjoint paths between all pairs of vertices s, t ∈ V .

Proof. (Based on Jungnickel 2013 [25, p. 576 (7.1.7)]) Given a k-connected graph G = (V,E).
By Menger’s Theorem (5.4.1), any two non-adjacent s, t ∈ V are connected by k vertex disjoint
paths. Now for adjacent s, t ∈ V , consider the subgraph obtained by removing the edge (s, t)
from G, H = (V,E \ (s, t)). H is at least (k − 1)-connected. By Menger’s Theorem, s and t
are connected by at least k − 1 vertex disjoint paths in H, then including the edge (s, t), this
gives at least k internally disjoint paths from s to t in G. Now for any given vertices s, t ∈ V ,
connected by at least k internally disjoint paths; G must be k-connected as at least k vertices
must be removed to disconnect s and t.

Corollary 5.4.1. Let G = (V,E) be a graph. If all pairs of vertices s, t ∈ V are adjacent then
κ(G) = |V | − 1, otherwise,

κ(G) = min{κ(s, t) : non-adjacent s, t ∈ V }. (5.6)

Although not required for calculating vertex connectivity, an important lemma which follows
from of Whitney’s Theorem relates the k-connectivity of a graph and the number of vertex
disjoint cycles which have only two vertices in common.

Lemma 5.4.1. Let G = (V,E) be a k-connected graph. Then there are at least ⌊k/2⌋ cycles in
G which have exactly two common vertices.

Proof. As G = (V,E) is k-connected, Whitney’s Theorem implies that for any given s, t ∈ V
there exists at least k internally disjoint paths. Pairing together two internally disjoint paths
then forms a cycle. Pairing all k internally disjoint paths between s and t gives ⌊k/2⌋ cycles in
G. Each cycle has s and t in common and is otherwise vertex disjoint.

Whitney’s Theorem when paired with Menger’s Theorem then gives the following steps for
calculating the vertex connectivity of a given connected graph G,

Step 1 Given a connected graph G = (V,E). Constuct the flow network N∗ = (V ′ ∪ V ′′, E′ ∪
E′′, c, s, t) as previously described, with c(e) = 1 for all e ∈ E′ ∪ E′′. Set s = 1 and t = 2.

Step 2 Set κ = |V | − 1.

Step 3 If s > κ, Stop; the vertex connectivity of G is then equal to κ. Otherwise, Go-to Step 4.

Step 4 If s is adjacent to t in G, Go-to Step 5. Otherwise, set κ = min(κ,MaxFlow(N∗, c, s′′, t′))
then, Go-to Step 5.

Step 5 Set t = t+ 1. If t = |V |+ 1, then set s = s+ 1 and t = s+ 1. Go-to Step 3.
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In pseudo code (by author in accordance with Kocay and Kreher 2013 [28, p. 182]):

Algorithm 5.4.1 Vertex Connectivity - Input: Connected graph G = (V,E). Output: Vertex
connectivity (κ(G)). Prerequisite: Algorithm to calculate maximal flow (MaxFlow(N,c,s,t)).

1: procedure kappa(G)
2: Convert G into the flow network N∗ as previously described.
3: κ← |V | − 1 ▷ Maximal vertex connectivity.
4: s← 0
5: while s < κ do
6: s← s+ 1
7: for t← s+ 1 to n do
8: if s ≁ t then ▷ s not adjacent to t in G.
9: κ← min(κ , MaxFlow(N∗, c, s′′, t′))

10: if s > κ then return κ
return κ

Python implementation: See Appendix A.8.

Theorem 5.4.3. Given a connected graph G = (V,E) with non-adjacent s, t ∈ V . The maximal
number of vertex disjoint paths from s to t can be determined using the Ford-Fulkerson Labelling
Algorithm with time complexity O(|E|min{deg(s), deg(t)}).

Proof. The graph G can be transformed into the desired flow network N∗ with complexity
O(|E|). Within the flow network, the maximal value of flow f between between s and t is less
than or equal to the minimal degree of s and t (in G). Hence, using the Ford-Fulkerson Labelling
Algorithm to calculate the maximal value of flow (equal to the maximal number of disjoint paths
between s and t), can be done with time complexity O(|E|f) = O(|E|min{deg(s),deg(t)}) (by
theorem 4.2.2).

Theorem 5.4.4. Given connected graph G = (V,E) with maximal degree ∆(G). The ver-
tex connectivity κ(G), can be calculated using the Ford-Fulkerson Labelling Algorithm with time
complexity O(|V |2|E|∆(G)).

Proof. The graph G can be transformed into the desired zero-one flow network with complexity
O(|E|). Corollary 5.4.1 dictates that to calculate κ(G), a calculation of κ(s, t) must be performed
at most |V |2 times. The time complexity of the calculation of κ(s, t) is at mostO(|E|∆(G)) hence,
calculating κ(G) has time complexity O(|V |2|E|∆(G)).

Note: As presented by Jungnickel 2013 [25, p. 212, 241], for alternative maximal flow algo-
rithms, the calculation of κ(s, t) can be shown to run in time complexity O(|V |1/2|E|) and the
calculation of κ(G) can be shown to run with time complexity O(|V |1/2|E|2).

5.5 Whitney’s Inequality

The vertex connectivity and edge connectivity of a graph share an intrinsic relation shown by
Hassler Whitney in 1932 [38],

Theorem 5.5.1. (Whitney’s Inequality) Let G = (V,E) be a non-trivial connected graph
then,

0 < κ(G) ≤ λ(G) ≤ δ(G). (5.7)
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Proof. (Based on Kocay and Kreher 2013 [28, p. 120]) Let vδ be a vertex such that deg(vδ) =
δ(G). Then by removing all edges incident from vδ, vδ will be isolated from the rest of the
graph. Therefore, an edge-cut SE consisting δ(G) edges incident with vδ always exists. Hence
λ(G) ≤ δ(G).

vδ
G \ vδ

vδ
G \ vδ

δ edges

Figure 5.7: Isolating vδ via an edge-cut of size δ.

Now let G be a graph with λ(G) = 1, then the removal of some edge e = (u, v) disconnects
G, but the removal of a single endpoint, u, will also disconnect G, implying κ(G) ≤ 1. If G is
a graph such that λ(G) = k and a vertex-cut exists, then a minimal edge-cut of G consists of
k edges. A vertex-cut with size k is formed by removing one of the endpoints of each of these
edges. This implies that κ(G) is at most equal to λ(G). If G is such that no vertex-cut exists
then κ(s, t) = |V | − 1, but if no vertex-cut exists, this implies that each vertex has an edge
incident with every other vertex, or G is the isolated vertex, in both cases an edge-cut in G must
be of cardinality at least |V | − 1. Hence κ(G) ≤ λ(G).

k edges

Figure 5.8: Minimal edge-cut with cardinality k (red) , vertex-cut with cardinality less than
or equal to k (blue), vertex-cut with cardinality less than k (orange).

Whitney’s Inequality shows a necessary condition for all connected graphs. Gary Chartrand
and Frank Harary [6] proved in 1966 (published 1968), that any set of specified connectives which
satisfy Whitney’s Inequality are in fact realized by some connected graph. That is,

Theorem 5.5.2. For all integers α, β, γ with 0 < α ≤ β ≤ γ, there exists a non-trivial connected
graph G such that κ(G) = α, λ(G) = β, δ(G) = γ.

Proof. (Based on Chartrand and Harary 1968 [6]) A graph with specified connectivites satisfying
Whitney’s Inequality, can be constructed using the following steps,
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Step 1 Take a graph G with two connected components G1 and G2, isomorphic to the complete
graph on γ + 1 vertices Kγ+1.

Step 2 Then choose α distinct vertices W1 ⊂ V (G1), and α distinct vertices W2 ⊂ V (G2). Pair
each elements of W1 with an unpaired element in W2, connect these paired elements via
an edge.

Step 3 Connect β − α vertices from W1 to G2 via an edge.

Python implementation: See Appendix A.9.

Step 1 Step 2 Step 3

Figure 5.9: Example construction - α = 1, β = 2, γ = 3.

As δ(G1) = δ(G2) = γ and α ≤ γ, not all vertices in G1 can have an edge added, which
implies that δ(G) = γ. As κ(G1) = κ(G2) = λ(G1) = λ(G1) = γ and G1 is connect to G2 via
β edges from α vertices, removing these α vertices or removing these β edges will disconnect G,
and as 0 < α ≤ β ≤ γ, this implies κ(G) = α, λ(G) = b and δ(G) = γ.

Figure 5.10: Graph G with κ(G) = 2, λ(G) = 4 and δ(G) = 5. Minimum vertex cut (blue),
minimum edge cut (red).

Theorem 5.5.3. For a given simple graph, G = (V,E) if δ(G) ≥ |V |
2 then, λ(G) = δ(G).

Proof. (Based on Jungnickel 2013 [25, p. 589 (8.6.3)]) Consider the simple connected graph
G = (V,E), with cut (S, T ) which induces a minimal edge cut CE . Assume that 0 < x = |S| ≤
|V |/2. As G is simple induced subgraph H = (S,E|S) has |(E|S)| ≤ x(x − 1)/2 (Maximal
for H a complete graph) and the minimal number of edges incident from S in G is xδ(G)/2.
Hence, |CE | ≥ (xδ(G) − x(x − 1))/2. Then f ′(x) = −x + (δ(G) + 1)/2 and f ′(x) = 0, implies
x = (δ(G) + 1)/2 is the only turning point of f(x); if δ ≥ |V |/2 then, their are no turning points
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for x ∈ [1, |V |/2] then,

f(1) = δ(G), (5.8)

f ′(1) =
δ(G)− 1

2
, (5.9)

f

(
|V |
2

)
=
|V |
2

(
δ(G) + 1− |V |

2

)
, (5.10)

As f ′(1) > 0, equations 5.8 and 5.10 are the local minima and local maxima respectively. Which
implies, λ(G) = |CE | ≥ f(x) ≥ δ(G) then, by Whitney’s Inequality, λ(G) = δ(G).

A graph G, is k-maximally connected if and only if κ(G) = δ(G) = k. Similarly, G is called
k′-maximally-edge connected if and only if λ(G) = δ(G) = k′. Maximally connected graphs can
be generated using the steps described in the proof of theorem 5.5.2. However, Gary Chartrand
and Frank Harary [6] also gave a method to generate the smallest possible (by number of vertices)
maximally connected simple graph.

Theorem 5.5.4. The smallest simple graph G which is k-maximally connected is the complete
graph Kk+1 on k + 1 vertices.

Proof. The complete graph Kk+1 has κ = k and δ = k, then by Whitney’s Inequality λ = k,
hence Kk+1 is k-maximally connected. As the graph is simple, if |V | is smaller than k + 1 then,
δ < k, hence Kk+1 is the smallest k-maximally connected simple graph.

Theorem 5.5.5. The smallest k′-maximally-edge connected graph Gα,k′ with κ(G) = α < δ(G)
and λ(G) = δ(G) = k′ is constructed in the following steps,

Step 1 Take a graph G with three connected components H1, H2 and H3, such that H1 and H2 are
isomorphic to the complete graph on k′ − α+ 1 vertices Kk′−α+1 and H3 is isomorphic to
the complete graph on α vertices Ka.

Step 2 Add an undirected edge (u, v) for each pair u ∈ V (H1 ∪H2) and v ∈ V (H3). The resulting
graph, denoted Gα,k′ , has κ(Gα,k′) = α and λ(Gα,k′) = δ(Gα,k′) = k′.

Proof. See Chartrand and Harary 1968 [6].

G1,2 G2,3 G3,3

Figure 5.11: Examples of graphs Gα,k′ .
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Chapter 6

The Edge Connectivity
Augmentation Problem

In many real world systems, actively increasing the edge connectivity, through the introduction
of new (possibly parallel) edges, is a technique used to maintain the robustness of the system as
connections become older and more likely to fail. The edge connectivity augmentation problem
asks, what is the smallest set of edges, whose addition to a graph, increases its edge connectivity
by k ≥ 1. The first general algorithm to solve this problem was given by Toshimasa Watanabe
and Akira Nakamura [31] in 1987. Their algorithm introduced a lot of new structures and ideas.
Ideas which were taken and applied to a representation of a graph are known as a cactus by Dalit
Naor, Dan Gusfield and Charles Martel [18] in 1997. This algorithm will be the focus of this
chapter, in particular, using this algorithm to solve the edge connectivity augmentation problem
when k = 1. Many of the tools required for this algorithm are not detailed in the original paper,
with many being highly non-trivial and not well documented. This chapter will consolidate the
tools required for this algorithm, presenting them alongside worked examples and giving exact
detail, which is often omitted in literature regarding this problem.

6.1 The Crossing Property

This section closely follows Naor and Vazirani 1991 [32, p. 274-275].
A minimal edge-cut splits the vertices of a graph into two disjoint sets A and Ā := V \ A.

Therefore, the cut (A, Ā) induces a minimal edge cut. A graph may have multiple minimal edge-
cuts which split the graph into many differing sets of vertices. This motivates the question; is
there any relationship between the distinct cuts (A, Ā) and (B, B̄), which both induce a minimal
edge-cuts? Answering this question will reveal some of the underlying structure of minimal edge-
cuts, which can then be exploited to compact the set of all minimal edge cuts into a linear graph
representation (Cactus Representation) which will be shown later in this report. This structure
stems from the crossing property of (A, Ā) cuts in G. Mainly, two distinct cuts (A, Ā) and (B, B̄)
are said to be crossing cuts if and only if the following hold true,

A ∩B ̸= ∅, (6.1)

Ā ∩B ̸= ∅, (6.2)

A ∩ B̄ ̸= ∅, (6.3)

Ā ∩ B̄ ̸= ∅. (6.4)
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1 2

3 4

(X, X̄) = ({1, 3}, {2, 4})

1 2

3 4

(Y, Ȳ ) = ({1, 2}, {3, 4})

1 2

3 4

(Z, Z̄) = ({1}, {2, 3, 4})

Figure 6.1: Cuts (X, X̄), (Y, Ȳ ) and (Z, Z̄) on a graph G with λ(G) = 2.

That is, two cuts (A, Ā) and (B, B̄) are crossing cuts if and only if the sets A and Ā are not
disjoint from the sets B and B̄. Take for example figure 6.1, the cuts (X, X̄) and (Y, Ȳ ) are
crossing cuts as X ∩ Y = {1}, X̄ ∩ Y = {2}, X ∩ Ȳ = {3} and X̄ ∩ Ȳ = {4}. Similarly the cut
(Z, Z̄) is not a crossing cut with (X, X̄) or (Y, Ȳ ) as Z ∩ X̄ = Z ∩ Ȳ = ∅.

Let d(A,B) denote the number of edges (s, t) ∈ E (or sum of the weights of these edges for a
weighted graph), for s ∈ A and t ∈ B. Then the following lemma as given by Naor and Vazirani
1991 [32] applies,

Lemma 6.1.1. Let (A, Ā) and (B, B̄) be crossing cuts which induce minimal edge-cuts in G.
Then,

d(A ∩B, Ā ∩B) = d(Ā ∩B, Ā ∩ B̄),

= d(Ā ∩ B̄, A ∩ B̄), (6.5)

= d(A ∩ B̄, A ∩B) = λ(G)/2,

d(A ∩B, Ā ∩ B̄) = d(A ∩ B̄, Ā ∩B) = 0. (6.6)

Proof. See Dinitz et al. 1976 [9].

Taking the crossing cuts (X, X̄) and (Y, Ȳ ) as in figure 6.1, lemma 6.1.1 can be verified,

d({1}, {2}) = d({2}, {4}),
= d({4}, {3}), (6.7)

= d({4}, {1}) = 1,

d({1}, {4}) = d({3}, {2}) = 0. (6.8)

Lemma 6.1.1 then gives the following important corollary,

Corollary 6.1.1. For a graph or weighted graph G with integral weights. If λ(G) is odd, then
there are no crossing cuts in G.

Proof. As the number of edges or weight of any cut is integral, d(A,B) must also be integral.
Hence, for a crossing cuts to exist equation 6.5 must also be integral. As λ(G) is odd λ(G)/2 is
not integral. This is a contradiction hence, no crossing cuts in G.
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Lemma 6.1.1 then gives the following lemma (as in Noar and Vazirani 1991 [32]),

Lemma 6.1.2. If there are crossing cuts which induce minimal edge-cuts in G, then the set of
vertices V can be partitioned into k ≥ 3 disjoint subsets V1, ..., Vk, that can be ordered on a cycle,
this is called a circular partition if it has the following properties:

1. The number of edges between any two adjacent sets Vi and Vi+1(mod k) on the cycle is exactly
λ(G)/2.

2. The number of edges between any two non-adjacent sets of vertices on the cycle is zero.

3. For any 1 ≤ a < b ≤ k, if A = ∪b−1
i=aVi, then the cut (A, Ā) induces a minimal edge-cut, and

if (B, B̄) induces a minimal edge-cut and is is not of the same form as A, then B ⊂ Vi,
for some i.

Proof. See Dinitz et al. 1976 [9].

From lemma 6.1.2 a bound on the number of minimal edge-cuts can be obtained (as in Dinitz
et al. 1976 [9]),

Theorem 6.1.1. For a graph G = (V,E), the number of minimal edge-cuts of G is at most

equal to
(|V |

2

)
.

Proof. See Dinitz et al. 1976 [9].

6.2 Chain Representation

To form a compact representation of the minimal edge-cuts, first all minimal edge-cuts should
be obtained. Mainly, let the cut (A, Ā) induce a minimal edge-cut in a graph G = (V,E), then
let Si, 1 ≤ i < |V |, denote set of (A, Ā) cuts, such that {1, ..., i} ⊆ A and i+ 1 ∈ Ā, that is,

Si = {(A, Ā)|{1, ..., i} ⊆ A, {i+ 1} ⊆ Ā}. (6.9)

It is desirable that each Si has no crossing cuts. If λ(G) is odd then by corollary 6.1.1 there are
no crossing cuts within Si, but if λ(G) is even then the following lemma is required (as in Noar
and Vazirani 1991 [32]),

Lemma 6.2.1. If the vertices of a graph G = (V,E) are labelled such that for any i ∈ {1, ..., |V |},
the vertex vi+1 is adjacent to some vj, j ∈ {1, ..., i}, then all cuts in Si of G are non-crossing.

Proof. See Noar and Vazirani 1991 [32].

Using lemma 6.2.1 to ensure each Si has no crossing cuts then, ∪|V |−1
i=1 Si is the set of all cuts

(A, Ā) which induce a minimal edge-cut of G. The set of Si however repeats a lot of elements,
in fact if one takes any two cuts (X, X̄), (Y, Ȳ ) ∈ Si with |X| ≤ |Y | then X ⊆ Y and |X| = |Y |
if and only if X = Y . As Si is such that all cuts are non-crossing, then Si be condensed into
its chain representation, denoted Ci, a partition of V into V1, ...Vk, k = |Si| + 1 disjoint sets of
vertices. Ci is then formed by taking the ordered set cuts s1, ..., sk−1 ∈ Si, such that As1 ∈ s1 has
minimal carnality of all A ∈ Si and Asi ∈ si has minimal cardinality of all A ∈ Si \ {s1, ..., si−1}
for 1 < i < k. Set V1 = As1 , then Vi = {v : v ∈ Asi , v ̸∈ Vi−1 ∪ ... ∪ V1}, for 1 < i ≤ |Si|.
Finally let Vk = {v : v ∈ V, v ̸∈ V|Si| ∪ V|Si|−1 ∪ ... ∪ V1}. As a result of this construction Ci has
{1, ..., i} ⊆ V1 and i + 1 ∈ Vk. Each Ci can then be represented as a path with with an edge

50



from Vj to Vj+1 for j ∈ {1, .., |Ci| − 1}. Then each minimal edge-cut in this path corresponds to
a minimal edge-cut in G.

As an example, take the graph in figure 6.21; its set of Si and corresponding chain represen-
tations are shown in figure 6.3.

12

7

6

84

5

3

Figure 6.2: Graph G = (V,E) with λ(G) = 4.

Si A

S1

{1}
{1, 7}
{1, 7, 6}
{1, 7, 6, 8}
{1, 7, 6, 8, 5}
{1, 7, 6, 8, 5, 4}

S2 {1, 2, 4, 5, 6, 7, 8}

S3
{1, 2, 3, 6, 7, 8}
{1, 2, 3, 6, 7, 8, 5}

S4 {1, 2, 3, 4, 6, 7, 8}

S5
{1, 2, 3, 4, 5, 8}
{1, 2, 3, 4, 5, 8, 7}

S6 {1, 2, 3, 4, 5, 6, 8}
S7 {1, 2, 3, 4, 5, 6, 7}

Ci Chain
C1 {1}, {7}, {6}, {8}, {5}, {4}, {2, 3}
C2 {1, 2, 4, 5, 6, 7, 8}, {3}
C3 {1, 2, 3, 6, 7, 8}, {5}, {4}
C4 {1, 2, 3, 4, 6, 7, 8}, {5}
C5 {1, 2, 3, 4, 5, 8}, {7}, {6}
C6 {1, 2, 3, 4, 5, 6, 8}, {7}
C7 {1, 2, 3, 4, 5, 6, 7}, {8}

Figure 6.3: All Si and corresponding Ci of the graph G as in figure 6.2.

1Figure 6.2 is equivalent to the graph given in Noar and Vazirani 1991 [32, Figure 1] however, this report
includes implicit steps in forming the chain representation, cactus representation and augmenting the edge con-
nectivity of this graph, which is omitted from Noar and Vazirani 1991 [32] and Noar et al. 1997 [18].
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6.3 Cactus Representation

Each chain Ci of G can be merged into a single graph H(G) known as a cactus; established by
Yefim Dinitz (previously Efim Dinitz), Alexander Karzanov and Michael Lomonosov [9] in their
1976 paper in Russian, later translated into English by Alexander Karzanov. This paper does not
detail how to construct a cactus, merely defining the structure and noting some key properties.
Although Dinitz et al. 1976 [9] has been attributed [15, 18, 32] with initially introduction of the
cactus, as defined in this section. These graphs have been previously studied under the name
of Husimi trees by Frank Harary and George Uhlenbeck [20] in 1953. The structure was named
after Kodi Husimi; who did some particularly interesting work on these graphs (See Husimi 1950
[22]). Harary and Uhlenbeck 1953 [20] reserved the name “cactus” for a specific class of Husimi
trees. Since then however, the term “Husimi tree” has come refer to graph with completely
different structure, hence to avoid ambiguity the term cactus has been adopted as the general
term.

Merging the chains Ci into a cactus will be discussed in the next section, but first this report
will discuss the properties of a cactus and a specific set of cacti which will be required to solve
the edge connectivity augmentation problem.

As presented in Naor and Vazirani 1991 [32] a cactus H(G), of a multigraph G, is a connected
weighted graph, such that each vertex in G maps to exactly one node in H(G), with each node
in H(G) corresponding to a subset (possibly empty) of vertices in G. Also, for each cut (X, X̄)
in H(G), the set of vertices A of G which map to the nodes u ∈ X, defines a cut (A, Ā) on G. In
particular, each (X, X̄) which induces a minimal edge cut in the cactus H(G), corresponds to a
cut (A, Ā) which induces a minimal edge-cut in G. Hence, λ(H(G)) = λ(G) and H(G) compactly
representing all minimal edge-cuts of G. An edge in the cactus H(G) is called a cycle-edge if the
edge is contained within at least one cycle in H(G), otherwise it is called a tree-edge. Each cycle-
edge must have weight λ(G)/2 and each tree-edge must have weight λ(G). Hence, each minimal
edge-cut is consists either of a single tree-edge or a pair cycle-edges from the same cycle. A node
u is called a leaf if u has a single incident tree-edge or u has exactly two incident cycle-edges.
The following theorem by Dinitz et al. 1976 [9] ensures that a cactus H(G) with these properties
can always be found,

Theorem 6.3.1. Every multigraph G = (V,E) has a cactus H(G) on at most 4|V | vertices.
Proof. See Dinitz et al. 1976 [9].

A cactus H(G) is not necessarily unique. To solve the edge augmentation problem, a more
specified unique cactus structure is required.

A 2-way cut node is any node whose removal disconnects the cactus into 2 connected com-
ponents. Similarly a 3-way cut node is any node whose removal disconnects the cactus into 3
connected components. An empty node is any node of a cactus H(G) which corresponds to an
empty set of vertices. A trivial node in H(G) is any empty node u of a cycle Y , with degree
greater than 2, whose removal of edges in Y causes the node u to be reachable only by empty
nodes in H(G). Hence, as defined by Lisa Fleischer [15] a canonical cactus of graph is a cactus
with no trivial nodes and no 3-way cut empty nodes.

Theorem 6.3.2. Every multigraph G = (V,E) has a unique canonical cactus.

Proof. See Kameda and Nagamochi 1994 [26].

For the remainder of this report the term cactus will refer to a canonical cactus, denoted
H(G). As shown by Tiko Kameda and Hiroshi Nagamochi [26], the (canonical) cactus of the
graph then has the property that every circular partition of G corresponds to a cycle in H(G),
and every cycle of H(G) represents a circular partition of G.
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6.3.1 Constructing Cactus Representations

The first algorithm to constuct the cactus of a graph was detailed in 1986 by Alexander Karzanov
and Evgeniy Timofeev [27], then refined by Dalit Naor and Vijay Vazirani [32] in 1991. The
algorithm for cactus construction in Naor and Vijay Vazirani 1991 [32] is noted to be incorrect
by Lisa Fleischer [15], the exact error pertains to the detail of Step 4 (g) below. This detail is
essential for introducing cycles into the cactus when merging chains together. A correct algorithm
by Tiko Kameda and Hiroshi Nagamochi [26] as given by Fleischer 1999 [15] is presented as
follows,

Step 1 For a given connected multigraph G = (V,E) enumerate the vertices of G such that there
is an edge connecting vertex i+ 1 and some vertex in the set {1, ..., i}.

Step 2 For each positive integer i < n, compute the specific edge connectivity κ(s, t) for all s ∈
{1, ..., i} and t = i+1. If κ(s, t) = λ(G) for some s ∈ {1, ..., i}, find the chain representation
Ci of Si. Otherwise, Ci = ∅.

Step 3 Set H(Gn) to the isolated node with label {1, ..., n}

Step 4 Set t = n−1. Merge the chains in reverse order from Ct to C1 into a single cactus structure
H(G) in the following steps:

(a) Let u be the vertex in H(Gt+1) labelled {1, ..., t+ 1}.
(b) t = t− 1.

(c) If Ct+1 = V1, ..., Vk, then remove u and all incident edges and introduce k new nodes
u1, ..., uk where ui = Vi ∈ Ct+1, with undirected edges (uj , uj+1) for 1 ≤ j < k.

(d) For all tree-edges and cycle-edges (u,w) in H(Gt+1), then let W ̸= ∅ be the set of
vertices in w, or if w is an empty node, the vertices reachable from w by some path
of edges disjoint from a cycle containing (u,w). Find the subset Vj such that W ⊂ Vj

and connect w to uj .

(e) Let U = {1, ..., t+ 1}, set each uj = Vj ∩ U . All other mappings remain unchanged.

(f) For each empty node with degree ≤ 2. Contract an edge as in figure 6.4 or figure 6.5.

(g) For each empty node with degree equal to 3. If all three edges are tree-edges, then
add a 3-cycle using the adjacent nodes, then remove the empty node (and all incident
edges) as in figure 6.6. If exactly one edge of the empty node is a tree-edge, then
contract the tree-edge as in figure 6.7. If all three edges of the empty node are cycle-
edges then remove the empty node and all edges incident.

Theorem 6.3.3. The canonical cactus of a graph can be constructed from the chain representa-
tion of a graph G = (V,E) with time complexity O(|V |2).

Proof. See Fleischer 1999 [15].

12 2 1

Figure 6.4: Contracting node 1 into the empty
node.

21 1 2

Figure 6.5: Contracting node 1 into the empty
node.
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2 3

1

2 3

1

Figure 6.6: Remove the empty node then form
the 3-cycle with nodes 1, 2, 3.

2 3

1

2 3

1

Figure 6.7: Contracting node 1 into the empty
node.

This report will now present a step-by-step construction of the cactus for the graph in figure
6.2. Note that edge weights are omitted from figures; each tree-edge has weight λ(G) = 4, and
each cycle-edge has weight λ(G)/2 = 2. The vertices of this graph have already been labelled
in accordance with Step 1. Step 2: The chain representation of this graph has already been
obtained as in figure 6.3. Step 3: H(G8) as in figure 6.8. Step 4: Figure 6.9 shows how the
chain C7 is introduced into the cactus H(G7).

{1, ..., 8}

Figure 6.8: H(G8)

{1, ..., 7}

u1

8

u2

Figure 6.9: Merging C7 into H(G8).

Merging C6 into H(G7); Step 4 (a): Set the node {1, ..., 7} = u. Step 4 (c): Remove the
edge (8, u), then split u into 2 nodes, u1 = {1, ..., 6, 8}, u2 = 7 and join these nodes via an edge.
Step 4 (d): Join an edge from node 8 to u1 (as 8 ∈ u1). Step 4 (e): Set u1 = {1, ..., 6}. u2 is
unaffected. Step 4 (f) and Step 4 (g) do not apply. This then gives H(G6) as in figure 6.10.

{1, ..., 6}

u1

8

7

u2

Figure 6.10: Merging C6 into H(G7).

Merging C5 into H(G6); Step 4 (a): Set the node {1, ..., 6} = u. Step 4 (c): Remove the
edges (7, u) and (8, u), then split u into 3 nodes, u1 = {1, ..., 5, 8}, u2 = 7, u3 = 6 then join the
nodes u1, u2 via an edge, and u2, u3 via an edge. Step 4 (d): Join an edge from node 8 to u1

(as 8 ∈ u1) and an edge from node 7 to u2 (as 7 ∈ u2). Step 4 (e): Set u1 = {1, .., 5}, u2 = ∅.
u3 is unaffected. Step 4 (f) does not apply. Step 4 (g): Remove the empty node u2 then form
a 3-cycle with nodes u1, 6, 7. This then gives H(G5) as in figure 6.11.

Merging C4 into H(G5), as in figure 6.12, is similar to merging C6 into H(G7). Merging C3
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into H(G4), as in figure 6.13, is similar to merging C5 into H(G6). Merging C2 into H(G3), as
in figure 6.14, is then similar to merging C6 into H(G7).

Merging C1 into H(G2); Step 4 (a) to Step 4 (e) gives the graph as in figure 6.15. Step 4
(f): Contract nodes 1 and 2 into empty node u2 and u6 respectively. Step 4 (g): Remove the
empty node u4 then form the 3-cycle with nodes 8, u3, u5. This then gives the cactus H(G) as
in figure 6.16.

{1, ..., 5}u1 8

7

u2

6u3

{1, ..., 5} 8

7

6

Figure 6.11: Merging C5 into H(G6). Removing the empty node u2 and form a 3-cycle with
nodes u1, 6, 7.

{1, ..., 4}

u1

8 7 6

5

u2

Figure 6.12: Merging C4 into H(G5).

{1, 2, 3}u1 8

7

6

5

u2

4u3

{1, 2, 3} 8

7

6
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Figure 6.13: Merging C3 into H(G4). Removing the empty node u2 and form a 3-cycle with
nodes u1, 4, 5.
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{1, 2}

u1

8 7 6 5 4

3

u2

Figure 6.14: Merging C2 into H(G3).

1

u1 u2 u3 u4 u5 u6

2

u7

7 6 8 5 4 3

Figure 6.15: Merging C1 into H(G2) prior to Step 4 (f) and Step 4 (g).

1 2 3

7 6 8 5 4

2

2

2 2

2

2
2

2

2
2

4

2

Figure 6.16: Canonical cactus H(G).
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6.4 Eulerian Tours

Recall the problem of the Seven Bridges of Königsberg, from the beginning of this report. Does
their exist a walk around the city, such that each bridge is crossed exactly one and if such a walk
exists, is it possible to end the walk in the quarter where the walk stared. Solving this problem
is the final tool required to solve the edge augmentation problem. This will provide an algorithm
to find such a walk through a cactus like structure, which in-tern allows a systematic traversal
of a cactus.

Figure 6.17: A plate of the 7 bridges of
Königsberg stretching across the Pregel River.
Source: [43].

1

2

3

4

Figure 6.18: Graph of Königsberg.

Euler’s original solution [13] to this problem transformed the city into a graph as in figure
6.18, with each quarter of the city being represented by a vertex and each bridge as an edge
between the vertices. Euler noticed that in order for such a walk to exist, that if the starting
vertex has even degree, then the walk must end on this vertex. Similarly, if the stating starting
vertex has odd degree, then the walk must end on a different vertex of odd degree. This can
be shown by considering the operation of entering and leaving the a given vertex, which will be
assigned the values 0 and 1 respectively. Then a sequence of these operations on the starting
vertex must always start with a 1 (always leave the vertex first) and alternate until all edges have
been crossed. If the number of edges attached the starting vertex is even, then this sequence will
terminate on a 0, hence the walk ends on this vertex. If the number of edges is odd, then this
sequence ends with a 1, hence the walk has left the starting vertex and cannot return as all edges
have been used. Furthermore, considering a vertex, not the starting vertex, its sequence must
begin with a 0 (enter the vertex first) and alternate until all of its edges have been crossed. If
the number of edges incident with this vertex is even, then this sequence will end on a 1, hence
the walk has left the vertex and cannot return as all edges have been used. But if the number
of edges is odd, then the sequence will end on a 0, hence the walk will end on this vertex. From
these two observations Euler then stated without proof the following,

Theorem 6.4.1. Given a connected graph G = (V,E). There exists a trail containing every
edge e ∈ E, if and only if, there exists exactly two or zero vertices of odd degree.

Proof. See Hierholzer 1873 [21].
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In honor of Euler, any trail which contains every edge of a graph exactly once, is called an
Eulerian trail. Furthermore, if the final and first vertex of such a path is the same then it is said
to be an Eulerian tour.

Corollary 6.4.1. A graph G = (V,E) contains an Eulerian tour if and only if all vertices v ∈ V
have even degree. In which case G is called Eulerian.

In the context the seven bridges problem, four vertices have odd degree, which contradicts
theorem 6.4.1. Therefore, no Eulerian trail or Eulerian tour exists over the seven bridges of
Königsberg.

If a graph is Eulerian, then an Eulerian tour must exist. Such a tour can be found using the
following algorithm by Carl Hierholzer 1873 [21],

Step 1 For a connected graph G = (V,E), with even degree for all vertices . Set i = 0, then
choose an arbitrary vertex v0. Construct a closed trail T0 = (e1, ..., ek), by first choosing
any arbitrary edge e1 incident from v0 to some v ∈ V , then continue to choose arbitrary
edges ej incident from the endpoint of ej−1 different from any previous edge e1, ..., ej−1

until returning to v0.

Step 2 Choose a vertex u ∈ V in the trail Ti incident with some edge not in the trail. If no such
ui exists, Stop Ti is an Eulerian tour. Otherwise, construct a trail T ′

i = (e′1, ..., e
′
k) by

choosing a arbitrary edge e′1 not in Ti incident from u to some v, then continue to choose
arbitrary edges e′j not in Ti incident from the endpoint of e′j−1, different from any previous
edge e′1, ..., e

′
j−1 until returining to u.

Step 3 Form the next closed trail Ti+1 by finding two edges ej , ej+1 in Ti such that u is the
endpoint of ej and is the incident vertex of ej+1, then add the trail T ′

i in-between ej and
ej+1. If uj = v0 then simply append T ′

i to the end of Ti to construct Ti+1. Set i = i + 1,
then Go-to Step 2.

Theorem 6.4.2. Given an Eulerian graph G = (V,E), an Eulerian tour can be found with time
complexity O(|E|).

Proof. See Hierholzer 1873 [21].

The algorithm to solve the edge connectivity augmentation problem requires a method to
visit each node of a cactus systematically. An optimal solution is decided once every node has
been assessed. This is unlike a greedy algorithm which chooses the optimal solution at each
stage rather than assessing the entire graph. If a graph is connected and Eulerian, then an
Eulerian tour systematically visits each vertex as it must cross every edge. However, a cactus
is not necessarily Eulerian as a node may have odd degree. A cactus can be made Eulerian by
replacing each tree-edge by a pair of parallel edges. Hence, an Eulerian tour can be found in the
resulting graph H∗(G) using the algorithm above. This Eulerian tour then gives an ordered set
of edges and nodes in H∗(G) which can be used to systematically visit each node in H(G).
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6.5 Edge Connectivity Augmentation Algorithm

The cactus representation gives insight into the weaknesses of a graph. In particular, Naor et
al. 1997 [18] showed that the leafs of a cactus can be used to place a lower bound on the optimal
number of edges required to increase the edge connectivity of a graph by one.

Lemma 6.5.1. For a connected multigraph G = (V,E), if the cactus H(G) has k leaves, then
at least ⌈k/2⌉ edges must be added to increase the edge connectivity of G by one.

Proof. See Naor et al. 1997 [18].

In fact this lower bound can always be realized by the following algorithm by Naor et al. 1997
[18], which solves the edge connectivity augmentation problem for k = 1,

Step 1 Construct the (canonical) cactus H(G).

Step 2 Form the Eulerian graph H∗(G) from H(G), by splitting each tree-edge into two parallel
edges. Find an Eulerian tour in H∗(G), enumerating the leaves of H(G), u1, ..., uk in the
order which the corresponding vertices in H∗(G) are first encountered in the Eulerian tour.

Step 3 Form the pairs {(Ui, Ui+⌈k/2⌉) | 1 ≤ i ≤ ⌊k/2⌋}, where Ui is the set of vertices from G that
map to the leaf ui of H(G).

Step 4 For each pair (Ui, Ui+⌈k/2⌉), 1 ≤ i ≤ ⌊k/2⌋, pick an arbitrary vertex from Ui and an
arbitrary vertex in Ui+⌈k/2⌉ and connect them by an edge. If k is odd, then connect a
vertex in U⌈k/2⌉ to a vertex in an arbitrary leaf Uj , j ̸= ⌈k/2⌉.

Theorem 6.5.1. Given a connected graph G = (V,E), the edge connectivity can be increased by
one with time complexity O(|V ||E|).

Proof. See Naor et al. 1997 [18].

Due to the arbitrary choices in this algorithm, an optimal solution to the edge connectivity
augmentation problem is not necessarily unique. Applying this algorithm multiple times will
increase the edge connectivity indefinitely however, it is noted by Naor et al. 1997 [18] that
optimally increasing the edge connectivity by one k times, does not imply that this is an optimal
solution for the edge connectivity augmentation problem when k > 1.

Returning to the example of the graph G, as in figure 6.2. The edge connectivity of G can
be increased by one in the following steps. Step 1: The cactus H(G), as in figure 6.16, has
already been constructed. Step 2: Split the tree-edge (2, 3) into two parallel edges, then gives
the Eulerian graph H∗(G), as in figure 6.19, with an Eulrian tour as shown in figure 6.20. The
leaves of the cactus H(G) are then enumerated, as in figure 6.21, in the order they first appear
in the Eulerian tour of H∗(G). Node 2 and the empty nodes are not leaves as they do not have
degree equal to one or have exactly two incident cycle-edges.

1 2 3

7 6 8 5 4

Figure 6.19: Eulerian graph H∗(G).

1 2 3

7 6 8 5 4

Figure 6.20: Eulerian tour in H∗(G).
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Ui U1 U2 U3 U4 U5 U6 U7

Vertices 1 3 4 5 8 6 7

Figure 6.21: Set of vertices Ui of G which map to the leaf ui.

Step 3: k = 7 hence, form the pairs (U1, U5), (U2, U6) and (U3, U7). Step 4: Using these
pairs, choose an arbitrary vertex for each Ui, in each pair, gives the edges (1, 8), (3, 6) and (4, 7).
As k is odd, U4 has an arbitrary choice of which Uj (j ̸= 4) to be paired. Pairing U4 with U3

then gives the edge (5, 4). Adding all of these edges to the graph G, optimally increases the edge
connectivity of G by one, as in figure 6.22.

12

7

6

84

5

3 12

7

6

84

5

3

Figure 6.22: Graph G, with λ(G) = 4 (left). Optimal edge augmentation by one of G (right)
with optimal edges highlighted in red.
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Chapter 7

Conclusion

In studying the basic notions of vertex and edge connectivity this report has demonstrated some
of the fundamental ideas for calculating, relating and increasing connectivity invariants. Flow
networks were also established and shown to have a duality relationship to these connectivity
invariants through Menger’s Theorem, Whitney’s Theorem and the Max-Flow Min-Cut Theorem.
Then in solving the maximal flow problem through the Ford-Fulkerson Labelling Algorithm,
these relations allowed the explicit calculation of both vertex and edge connectivity. Whitney’s
Inequality then gave us another relation between these connectivity invariants and minimal
vertex degree, from which the idea of maximal connectivity and constructing graphs with specific
connectivity stemmed. The problem of optimally increasing the edge connectivity by one was
then solved by introducing the idea cactus representations.

Further to the topics discussed in this report; a structure similar to cactus representation,
the Gomory-Hu tree [23, p. 46-50] is one of many structures required to solve the general edge
augmentation problem. Each graph has a Gomory-Hu tree which encodes the minimal capacity
cuts between two vertices of graph, into at least one of edges on the path joining these vertices
in the tree. These trees then find a solution to the maximal flow problem with time complexity
O(|V | log(|V |)) [23, p. 46].

There are also various other invariants measuring connectivity of graphs. One of these in-
variants is Cheeger’s constant [2, p. 70] (or “edge expansion rate”), which is an isoperimetric
invariant measuring the ratio between boundaries and interiors of all subsets of the network.
This invariant is closely related to eigenvalues of the adjacency matrix and associated spectral
gaps. This is a highly active research topic in the area of “Spectral Graph Theory” with vari-
ous practical applications, such as the page rank algorithm [2, p. 59] used by Google or spectral
clustering [2, p. 61] of networks using eigenvectors. Cheeger’s constant also leads naturally to ex-
pander graphs [2, p. 70], a topic with various relations to deep mathematical theories like number
theory (Ramanujan graphs [2, p. 68]), representation theory and geometric group theory (Cayley
graphs [2, p. 94]).
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pp.264–274, 1960.

[13] Euler, Leonhard. Solutio problematis ad geometriam situs pertinentis. Commentarii
Academiae Scientiarum Petropolitanae, 8, pp.128-140, 1741.

[14] Evans, James R. Minieka, Edward. Optimization Algorithms for Networks and Graphs. Sec-
ond Edition, Marcel Dekker, 1992.

62



[15] Fleischer, Lisa. Building Chain and Cactus Representations of All Minimum Cuts from Hao-
Orlin in the Same Asymptotic Run Time. Journal of Algorithms, Academic Press, 33 (1),
pp.51-72, 1999.

[16] Ford, Lester R. Fulkerson, Delbert R. Maximal Flow Through a Network. Canadian Journal
of Mathematics, 8, pp.399–404, 1956.

[17] Edited by : Gross, Jonathan L. Yellen, Jay. Zhang, Ping. Handbook of Graph Theory. Second
Edition, CRC Press, 2014.

[18] Gusfield, Dan. Martel, Charles. Naor, Dalit. A Fast Algorithm for Optimally Increasing the
Edge Connectivity. SIAM J. Comput, 26 (4), pp.1139–1165, 1997.

[19] Harary, Frank. Graph Theory. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1972.

[20] Harary, Frank. Uhlenbeck, George E. On the Number of Husimi Trees, I. Proceedings of the
National Academy of Sciences, 39 (4), pp.315-322, 1972.

[21] Hierholzer, Carl. Wiener, Christian. Ueber die Möglichkeit, einen Linienzug ohne Wieder-
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Appendix A

Python Implementation

The following python implementations are the authors work.

A.1 Prerequisites

All algorithms require the following to be included:

1 import numpy as np
2 from numpy import l i n a l g as LA

The following is used in some algorithms and should also be included:

1 de f gensimpgraph (n = 2 , p = 0 . 5 ) :
2 ”””Generate an adjacency matrix with p r obab i l i t y o f an edge p .
3 n : Number o f v e r t i c e s ( g r e a t e r than 1) .
4 p : p r obab i l i t y o f an edge .
5 ”””
6 adjmatr ix = np . z e r o s ( ( n , n) , dtype=in t )
7 i f n > 1 :
8 f o r row in range (0 , n−1) :
9 f o r column in range ( row + 1 , n) :

10 i f np . random . random ( ) < p :
11 adjmatr ix [ row ] [ column ] = in t (1 )
12 adjmatr ix = adjmatr ix + adjmatr ix .T
13 r e turn adjmatr ix
14

15

16 de f complete (n) :
17 ”””Returns adjacency matrix o f complete graph on n v e r t i c e s .
18 n : Number o f v e r t i c e s .
19 ”””
20 r e turn np . ones ( ( n , n) ) − np . i d e n t i t y (n)
21

22 de f c o n v e r t t o l i s t ( adjmatr ix ) :
23 ”””Converts adjacency matrix to l i s t o f edges and l i s t o f v e r t i c e s .
24 adjmatr ix : Adjacency matrix .
25 ”””
26 rows = adjmatr ix . shape [ 0 ]
27 columns = adjmatr ix . shape [ 1 ] #Could reuse row as always square matrix
28 a d j l i s t = [ ]
29 v e r t e x l i s t = [ ]
30 f o r row in range (0 , rows ) :
31 v e r t e x l i s t . append ( row )
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32 f o r column in range ( row + 1 , columns ) :
33 i f adjmatr ix [ row ] [ column ] == 1 :
34 a d j l i s t . append ( [ row , column ] )
35 r e turn a d j l i s t , v e r t e x l i s t
36

37 de f c onv e r t f r omad j l i s t ( a d j l i s t , v e r t e x l i s t ) :
38 ”””Converts l i s t o f v e r t i c e s to adjacency matrix .
39 a d j l i s t : l i s t o f und i rec ted edges .
40 v e r t e x l i s t : l i s t o f v e r t i c e s .
41 ”””
42 rows = len ( v e r t e x l i s t ) #Accounts f o r i s o l a t e d v e r t i c e s .
43 adjmatr ix = np . z e r o s ( ( rows , rows ) , dtype=in t )
44 f o r edges in a d j l i s t :
45 adjmatr ix [ edges [ 0 ] ] [ edges [ 1 ] ] = 1
46 adjmatr ix = adjmatr ix + adjmatr ix .T
47 r e turn adjmatr ix
48

49 de f degree ( adjmatr ix ) :
50 ”””Returns l i s t o f degree s
51 adjmatr ix : adjacency matrix .
52 ”””
53 squared = np . dot ( adjmatrix , adjmatr ix )
54 r e turn [ squared [ i ] [ i ] f o r i in range ( adjmatr ix . shape [ 0 ] ) ]
55

56 de f componentsviamatrix ( adjmatr ix ) :
57 ”””Finds connected components us ing only adjacency matrix .
58 ”””
59 compmatrix = np . copy ( adjmatr ix )
60 rows = compmatrix . shape [ 0 ]
61 columns = compmatrix . shape [ 1 ]
62 f o r i in range ( rows ) :
63 compmatrix [ i ] [ i ] = i
64 t r a cke r = 0
65 f o r row in range (0 , rows −1) :
66 f o r column in range ( row+t ra cke r +1, columns ) :
67 i f compmatrix [ row ] [ column ] == 1 :
68 compmatrix = swap ( compmatrix , column , row+t ra cke r+1)
69 t r a cke r = t ra cke r + 1
70 t r a cke r = max( t r a cke r − 1 , 0)
71 components = [ [ 0 ] ]
72 f o r column in range (1 , rows ) :
73 f o r row in range (0 , column ) :
74 i f compmatrix [ row ] [ column ] == 1 :
75 components [ −1 ] . append ( compmatrix [ column ] [ column ] )
76 break
77 e l i f row == column − 1 :
78 components . append ( [ compmatrix [ column ] [ column ] ] )
79 r e turn components
80

81 de f swap ( adjmatrix , vertexa , vertexb ) :
82 ”””Swaps v e r t i c e s in adjmatr ix ”””
83 rows = adjmatr ix . shape [ 0 ]
84 swapmatrix = np . i d e n t i t y ( rows , dtype=in t )
85 swapmatrix [ ver texa ] [ ver texa ] = 0
86 swapmatrix [ vertexb ] [ vertexb ] = 0
87 swapmatrix [ ver texa ] [ vertexb ] = 1
88 swapmatrix [ vertexb ] [ ver texa ] = 1
89 r e turn np . dot ( swapmatrix , np . dot ( adjmatrix , swapmatrix ) )
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A.2 Graphic Algorithm

1 de f g raph ica lgor i thm ( deg r e e s e t ) :
2 ”””Graphic Algorithm , r e tu rn s Fa l se i f not po s s i b l e , o the rw i se r e tu rn s

adjacency matrix
3 deg r e e s e t : L i s t o f n degree s o f n v e r t i c e s .
4 ”””
5 #Finds l a r g e s t degree ver tex .
6 maxd = max( deg r e e s e t )
7 #Makes a l i s t o f m l i s t s , m = max( deg r e e s e t ) + 1 .
8 d e g l e f t = [ [ ] f o r i in range (maxd + 1) ]
9 #Creates an empty edge s e t .

10 edgese t = [ ]
11 #Creates a s t o r e f o r used Ve r t i c e s f o r use l a t e r in a lgor i thm .
12 used = [ ]
13 #Creates a memory s t o r e f o r l a t e r use .
14 useds to r e = [ ]
15 #Sets the number o f empty l i s t s from the f i n a l l i s t = 0
16 emptydeg = 0
17 #A sto r e f o r degree o f ” a c t i v a t e ” ver tex
18 deg r e ep l a c eho ld e r = 0
19 #Creates a s t o r e f o r ” ac t i va t ed ” ver tex number . ( f o r use in populat ing the

edge s e t )
20 ve r t exp l a c eho ld e r = −1
21 #Places v e r t i c e s i n to the l i s t with index equal to i t s d e s i r ed degree .
22 f o r i in range ( l en ( deg r e e s e t ) ) :
23 d e g l e f t [ d eg r e e s e t [ i ] ] . append ( i )
24 #Unt i l the zero index l i s t conta in s a l l the v e r t i c e s , loop .
25 whi le l en ( d e g l e f t [ 0 ] ) != l en ( deg r e e s e t ) :
26 #Finds the h i ghe s t degree ver tex ( a c t i va t ed ver tex ) , s t o r e s i t s degree (d)

and i t s number (v ) .
27 #Moves i t from the h i ghe s t degree l i s t to the zero l i s t
28 deg r e ep l a c eho lde r = maxd − emptydeg
29 ve r t exp l a c eho ld e r = d e g l e f t [maxd − emptydeg ] [ 0 ]
30 d e g l e f t [ 0 ] . append ( d e g l e f t [maxd − emptydeg ] [ 0 ] )
31 de l d e g l e f t [maxd − emptydeg ] [ 0 ]
32 #Loops un t i l moved d v e r t i c e s down 1 l i s t .
33 whi le deg r e ep l a c eho lde r != 0 :
34 #Checks to see i f the cur rent h i ghe s t degree l i s t i s empty or the

h i ghe s t degree l i s t i s the 0 degree l i s t .
35 i f l en ( d e g l e f t [maxd − emptydeg ] ) == 0 or maxd − emptydeg == 0 :
36 #Find the next none empty degree l i s t
37 whi le l en ( d e g l e f t [maxd − emptydeg ] ) == 0 :
38 emptydeg +=1
39 #I f the a lgor i thm i s in the zero l i s t , then cannot be done as

t h e i r are s t i l l v e r t i c e s to be moved but none can .
40 i f maxd − emptydeg == 0 :
41 r e turn Fa l se #Returns that not graphic
42 #I f we encounter something we have used be f o r e with the ac t i va t ed

vertex , then d e l e t e i t dur ing t h i s loop .
43 whi le d e g l e f t [maxd − emptydeg ] [ 0 ] in used :
44 #Store s the data on the removed ver tex
45 useds to r e . append ( [ d e g l e f t [maxd − emptydeg ] [ 0 ] , maxd − emptydeg ,

emptydeg ] )
46 de l d e g l e f t [maxd − emptydeg ] [ 0 ]
47 #Again does the check to f i nd next none empty degree s e t
48 i f l en ( d e g l e f t [maxd − emptydeg ] ) == 0 :
49 whi le l en ( d e g l e f t [maxd − emptydeg ] ) == 0 :
50 emptydeg +=1
51 i f maxd − emptydeg == 0 :
52 r e turn Fa l se #Returns that not graphic
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53 #Gets a ver tex to be a c t i v e with the a c t i v e t ed vertex , ( h i ghe s t degree
unused at s t a r t o f degree l i s t )

54 #Moves i t down 1 degree l i s t towards the 0 degree l i s t , adds t h i s to
the used l i s t but not the used s to r ed memory

55 a c t i v e v e r t e x = d e g l e f t [maxd − emptydeg ] [ 0 ]
56 d e g l e f t [maxd − emptydeg − 1 ] . append ( a c t i v ev e r t e x )
57 de l d e g l e f t [maxd − emptydeg ] [ 0 ]
58 #Reduces v e r t i c e s needed by 1
59 deg r e ep l a c eho ld e r −= 1
60 #Adds the ac t i va t ed and the a c t i v e ver tex to the edge l i s t
61 edgese t . append ( [ ve r t exp laceho lde r , a c t i v e v e r t e x ] )
62 used . append ( a c t i v e v e r t e x )
63 #Before next loop , re add a l l v e r t i c e s which were de l e t ed and r e s e t the

h i ghe s t none empty degree l i s t .
64 f o r i in u seds to r e :
65 d e g l e f t [ i [ 1 ] ] . append ( i [ 0 ] )
66 emptydeg = min ( emptydeg , i [ 2 ] )
67 #Reset the used and useds to r e l i s t s
68 used = [ ]
69 useds to r e = [ ]
70 #Checks to see i f cur r ent none empty degree s e t i s empty . No need to check

i f at ze ro degree l i s t here .
71 i f l en ( d e g l e f t [maxd − emptydeg ] ) == 0 :
72 whi le l en ( d e g l e f t [maxd − emptydeg ] ) == 0 :
73 emptydeg +=1
74 #Converts the edge s e t and a generated ver tex s e t i n to adjmatr ix and re tu rn s .
75 r e turn c onv e r t f r omad j l i s t ( edgeset , [ i f o r i in range ( l en ( deg r e e s e t ) ) ] )
76

77 #Example
78 g = graph ica lgor i thm ( [ 1 , 1 ] ) #Returns g = [ [ 0 , 1 ] , [ 1 , 0 ] ] .
79 n = graph ica lgor i thm ( [ 3 , 3 , 3 ] ) #Returns n = False .
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A.3 Prim’s Algorithm

1 de f prims (E, W, V) :
2 ”””Prims ’ s Algorithm : Takes an Edge L i s t E with Corresponding L i s t o f Weights

W
3 and s e t o f Ve r t i c e s V and re tu rn s f a l s e i f minimal spanning t r e e does not

e x i s t
4 or r e tu rn s edge l i s t , ve r tex l i s t and corre spond ing l i s t o f weights
5 o f minimal spanning t r e e
6 E: Edge l i s t
7 W: L i s t o f weights (E[ i ] has weight W[ i ] )
8 V: L i s t o f Ve r t i c e s
9 ”””

10 t r e e = [V [ 0 ] ] #Sta r t i ng ver tex
11 edges = [ [ E [ i ] , W[ i ] ] f o r i in range ( l en (E) ) ] #Combine edges and weights
12 spanningedges = [ ] #L i s t f o r edges
13 weight = [ ] #L i s t f o r f i n a l weights
14 cons ide r ed = [ ] #L i s t o f edges to be cons ide r ed
15 whi le ( l en ( edges ) != 0) and ( l en ( spanningedges ) != ( l en (V) − 1) ) :
16 cons ide r ed = [ ]
17 f o r i in range ( l en ( edges ) ) :
18 #Goes through edges in r e v e r s e .
19 i f ( edges [ l en ( edges ) −1− i ] [ 0 ] [ 0 ] in t r e e ) and ( edges [ l en ( edges ) − 1− i

] [ 0 ] [ 1 ] in t r e e ) :
20 edges . pop ( l en ( edges ) −1− i ) #Edge no longe r needs to be cons ide r ed

f o r any t r e e .
21 e l i f ( edges [ l en ( edges ) −1− i ] [ 0 ] [ 0 ] in t r e e ) or ( edges [ l en ( edges ) − 1− i

] [ 0 ] [ 1 ] in t r e e ) :
22 cons ide r ed . append ( edges [ l en ( edges ) −1− i ] ) #Edge w i l l be cons ide r ed

f o r t r e e .
23 e l s e :
24 pass
25 i f c ons ide r ed == [ ] :
26 r e turn Fa l se #di sconnected graph
27 cons ide r ed . s o r t ( key=lambda x : x [ 1 ] ) #s o r t s cons ide r ed edges by weight
28 t r e e . append ( cons ide r ed [ 0 ] [ 0 ] [ 0 ] )
29 t r e e . append ( cons ide r ed [ 0 ] [ 0 ] [ 1 ] )
30 spanningedges . append ( cons ide r ed [ 0 ] [ 0 ] ) #adds lowest weight edge
31 weight . append ( cons ide r ed [ 0 ] [ 1 ] ) #adds weight
32 i f ( l en ( spanningedges ) != ( l en (V) − 1) ) :
33 r e turn Fa l se
34 e l s e :
35 r e turn spanningedges , V, weight
36

37 #Example
38 E = [ [ 0 , 1 ] , [ 1 , 2 ] , [ 2 , 3 ] , [ 1 , 3 ] ]
39 W = [1 , 2 , 2 , 1 ]
40 V = [ 0 , 1 , 2 , 3 ]
41 prims (E,W,V) #Returns [ [ 0 , 1 ] , [ 1 , 3 ] , [ 1 , 2 ] ] , [ 0 , 1 , 2 , 3 ] , [ 1 , 1 , 2 ]
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A.4 Kruskal’s Algorithm

1 de f kruska l (E, W, V) :
2 ”””Kruskal ’ s Algorithm : Takes an Edge L i s t E with Corresponding L i s t o f

Weights W and s e t o f Ve r t i c e s V and re tu rn s f a l s e i f minimal spanning t r e e
does not e x i s t or r e tu rn s edge l i s t , ve r tex l i s t and corre spond ing l i s t o f
weights o f minimal spanning t r e e .

3 E: Edge l i s t
4 W: L i s t o f weights (E[ i ] has weight W[ i ] )
5 V: L i s t o f Ve r t i c e s
6 ”””
7 t r e e s = [ [ i ] f o r i in V] #Sta r t s a t r e e at each ver tex
8 edges = [ [ E [ i ] , W[ i ] ] f o r i in range ( l en (E) ) ] #combines edges and weight
9 edges . s o r t ( key=lambda x : x [ 1 ] ) #Sor t s edges by weight

10 spanningedges = [ ] #L i s t f o r edges
11 weight = [ ] #L i s t f o r f i n a l weights
12 whi le ( l en ( edges ) != 0) and ( l en ( spanningedges ) != ( l en (V) − 1) ) :
13 s t a r t = edges [ 0 ] [ 0 ] [ 0 ] #s t a r t o f lowest weight edge
14 end = edges [ 0 ] [ 0 ] [ 1 ] #end o f lowest weight edge
15 s t a r t t r e e = −1 #which t r e e does the s t a r t po int belong
16 endtree = −1 #which t r e e does the end po int belong
17 #Checks i f in same t r e e
18 f o r i in range ( l en ( t r e e s ) ) :
19 i f s t a r t in t r e e s [ i ] :
20 i f end in t r e e s [ i ] :
21 edges . pop (0 ) #This edge would c r e a t e a cy c l e
22 break
23 e l s e :
24 s t a r t t r e e = i #Found s t a r t po int
25 e l i f end in t r e e s [ i ] :
26 endtree = i #Found end po int
27 e l s e :
28 pass #Do nothing
29 #I f Both v e r t i c e s found in d i f f e r e n t t r e e s , add an edge between them .
30 i f ( s t a r t t r e e != −1) and ( endtree != −1) :
31 spanningedges . append ( [ s t a r t , end ] )
32 weight . append ( edges [ 0 ] [ 1 ] )
33 #jo i n the t r e e s toge the r
34 f o r i in t r e e s [ endtree ] :
35 t r e e s [ s t a r t t r e e ] . append ( i )
36 t r e e s . pop ( endtree )
37 edges . pop (0 ) #Edge no longe r under c on s i d e r a t i on
38 break
39 i f ( l en ( spanningedges ) != ( l en (V) − 1) ) :
40 r e turn Fa l se
41 e l s e :
42 r e turn spanningedges , V, weight
43

44 #Example
45 E = [ [ 0 , 1 ] , [ 1 , 2 ] , [ 2 , 3 ] , [ 1 , 3 ] ]
46 W = [1 , 2 , 2 , 1 ]
47 V = [ 0 , 1 , 2 , 3 ]
48 kruska l (E,W,V) #Returns [ [ 0 , 1 ] , [ 1 , 3 ] , [ 1 , 2 ] ] , [ 0 , 1 , 2 , 3 ] , [ 1 , 1 , 2 ]
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A.5 Prüfer Code

1 de f pru f e r code ( adjmatr ix ) :
2 ”””Takes in a connected t r e e and g i v e s p ru f e r code .
3 adjmatr ix : adjacency matrix cor re spond ing to t r e e .
4 ”””
5 adj = np . copy ( adjmatr ix )
6 deg r e e s e t = degree ( adjmatr ix )
7 code = [ ]
8 whi le sum( deg r e e s e t ) > 2 :
9 f o r i in range ( l en ( deg r e e s e t ) ) :

10 i f d e g r e e s e t [ i ] == 1 :
11 deg r e e s e t [ i ] = 0
12 f o r j in range ( l en ( deg r e e s e t ) ) :
13 i f adj [ i ] [ j ]==1:
14 code . append ( j )
15 deg r e e s e t [ j ] −= 1
16 adj [ i ] [ j ] = 0
17 adj [ j ] [ i ] = 0
18 break
19 break
20 r e turn code
21

22 de f pru fe rdecode ( code ) :
23 ”””Given a pru f e r code , r e tu rn s a graph as an adjacency matrix .
24 code : p ru f e r code g iven as tup l e o f n−2 i n t e g e r s .
25 ”””
26 v = len ( code )+2
27 adjmatr ix = np . z e r o s ( ( v , v ) , dtype = in t )
28 deg r e e s e t = [ 1 f o r i in range (v ) ]
29 f o r i in code :
30 deg r e e s e t [ i ] += 1
31 f o r i in code :
32 f o r j in range (v ) :
33 i f d e g r e e s e t [ j ] == 1 :
34 adjmatr ix [ i ] [ j ] = 1
35 adjmatr ix [ j ] [ i ] = 1
36 deg r e e s e t [ i ] −= 1
37 deg r e e s e t [ j ] −= 1
38 break
39 f o r j in range (v ) :
40 i f d e g r e e s e t [ j ] == 1 :
41 f o r i in range ( j +1,v ) :
42 i f d e g r e e s e t [ i ] == 1 :
43 adjmatr ix [ i ] [ j ] = 1
44 adjmatr ix [ j ] [ i ] = 1
45 break
46 break
47 r e turn adjmatr ix
48

49 #Example
50 pru f e r code (np . array ( [ [ 0 , 1 , 1 ] , [ 1 , 0 , 0 ] , [ 1 , 0 , 0 ] ] ) ) #Returns [ 0 ]
51 pru fe rdecode ( [ 0 ] ) #Returns array ( [ [ 0 , 1 , 1 ] , [ 1 , 0 , 0 ] , [ 1 , 0 , 0 ] ] )
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A.6 Ford-Fulkerson Labelling Algorithm

1 c l a s s networkgraph :
2 de f i n i t ( s e l f , g , c , s , t ) :
3 ”””Used f o r working with networks .
4 g : L i s t o f ordered pa i r s o f edges and v e r t i c e s [ [ Edge l i s t ] , [ Vertex l i s t

] ] .
5 c : Ordered l i s t o f capac i ty o f each edge e in g [ 0 ] = [ Edge L i s t ] .
6 s : Source Node s in G[ 1 ] .
7 t : Sink Node t in G[ 1 ] .
8 ”””
9 s e l f . g = g

10 s e l f . edges = s e l f . g [ 0 ]
11 s e l f . v e r t i c e s = s e l f . g [ 1 ]
12 s e l f . c = c
13 s e l f . s = s
14 s e l f . t = t
15 s e l f . f l ow r e s e t ( ) #Zero Flow .
16

17 de f f l ow r e s e t ( s e l f ) :
18 ””” Resets f low in network to zero f low
19 ”””
20 s e l f . f = [ 0 f o r i in s e l f . g [ 0 ] ] #Zero Flow .
21

22 de f maxflow ( s e l f ) :
23 ”””Computes Max Flow”””
24 s e l f . f o r d f u l k e r s on ( )
25 value = 0
26 f o r i in range ( l en ( s e l f . edges ) ) :
27 j = s e l f . edges [ i ]
28 i f j [ 0 ] == s e l f . s :
29 value += s e l f . f [ i ]
30 r e turn value
31

32 de f f o r d f u l k e r s on ( s e l f ) :
33 ””” Appl ies f o rd f u l k e r s on l a b e l l i n g a lgor i thm un t i l a maximal f low i s

obta ined .
34 ”””
35 s e l f . l a b e l = [ [ ”−” , np . in f , s e l f . s , ” s ” ] ] #[ [ s t a r t /end vertex , maximal

i n c r e a s e in flow , end/ s t a r t vertex , d i r e c t i o n ] ]
36 node = s e l f . s #Sta r t s at Source
37 index = 0 #Looking at l a b e l 0
38 l a b e l l e d = [ s e l f . s ]
39 path = [ s e l f . t ]
40 paths ign = [ ]
41 whi le ( s e l f . t not in l a b e l l e d ) :
42 f o r i in range (0 , l en ( s e l f . edges ) ) :
43 #I f forward edge and end o f edge has not been l a b e l l e d
44 i f ( s e l f . edges [ i ] [ 0 ] == node and not ( s e l f . edges [ i ] [ 1 ] in l a b e l l e d )

) :
45 #I f f low can a c tua l l y be in c r e a s ed
46 i f ( s e l f . c [ i ]− s e l f . f [ i ] != 0) :
47 value = min ( s e l f . c [ i ] − s e l f . f [ i ] , s e l f . l a b e l [ index ] [ 1 ] )
48 s e l f . l a b e l . append ( [ node , value , s e l f . edges [ i ] [ 1 ] , ”+” , i ] )

#Forward Edge
49 l a b e l l e d . append ( s e l f . edges [ i ] [ 1 ] )
50 #I f backward edge and end o f edge has not been l a b e l e l l e d
51 e l i f ( s e l f . edges [ i ] [ 1 ] == node and not ( s e l f . edges [ i ] [ 0 ] in

l a b e l l e d ) ) :
52 #I f f low can a c tua l l y be in c r e a s ed
53 i f ( s e l f . f [ i ] != 0) :
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54 value = min ( s e l f . f [ i ] , s e l f . l a b e l [ index ] [ 1 ] )
55 s e l f . l a b e l . append ( [ node , va lue , s e l f . edges [ i ] [ 0 ] , ”−” , i

] ) #Backward Edge
56 l a b e l l e d . append ( s e l f . edges [ i ] [ 0 ] )
57 e l s e :
58 pass
59 #Looks at next o l d e s t l a b e l
60 index = index + 1
61

62 #I f next cons ide r ed node i s the s ink t , do nothing
63 i f ( s e l f . l a b e l [ index −1 ] [ 2 ] == s e l f . t ) :
64 pass
65 #I f no more l a b e l s then no augmenting path
66 e l i f ( index + 1) > l en ( s e l f . l a b e l ) :
67 r e turn Fa l se
68 #Else more to search
69 e l s e :
70 node = s e l f . l a b e l [ index ] [ 2 ]
71 i n c r e a s e = s e l f . l a b e l [ −1 ] [ 1 ]
72 edges = [ ]
73 whi le path [−1] != s e l f . s :
74 f i nd = path [−1]
75 f o r i in s e l f . l a b e l :
76 i f i [ 2 ] == f i nd :
77 path . append ( i [ 0 ] )
78 edges . append ( i [ 4 ] )
79 paths ign . append ( i [ 3 ] )
80 break
81 f o r i in range ( l en ( edges ) ) :
82 i f paths ign [ i ] == ’+’ :
83 s e l f . f [ edges [ i ] ] += in c r e a s e
84 e l s e :
85 s e l f . f [ edges [ i ] ] −= in c r e a s e
86 whi le s e l f . f o r d f u l k e r s on ( ) :
87 pass
88 r e turn Fa l se
89

90 #Example
91 g = [ [ [ 0 , 1 ] , [ 0 , 2 ] , [ 2 , 3 ] , [ 1 , 4 ] , [ 3 , 4 ] ] , [ 0 , 1 , 2 , 3 , 4 ] ]
92 network = networkgraph (g , [ 1 f o r i in gdash [ 0 ] ] , 0 , 4) #Al l edges capac i ty 1 .

Source 0 , Sink 4 .
93 network . maxflow ( ) #Returns 2
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A.7 Edge Connectivity

1 de f ctdn1 ( adjmatr ix ) :
2 ””” Convert s imple graph ( adjmatr ix ) to d i r e c t ed graph . ( each und i rec ted edge

r ep laced with two d i r e c t ed edges ) For Edge Connect iv i ty .
3 ”””
4 rows = adjmatr ix . shape [ 0 ]
5 columns = adjmatr ix . shape [ 1 ] #Could reuse row as always square matrix
6 a d j l i s t = [ ]
7 v e r t e x l i s t = [ ]
8 f o r row in range (0 , rows ) :
9 v e r t e x l i s t . append ( row )

10 f o r column in range ( row + 1 , columns ) :
11 i f adjmatr ix [ row ] [ column ] == 1 :
12 a d j l i s t . append ( [ row , column ] )
13 a d j l i s t . append ( [ column , row ] )
14 r e turn a d j l i s t , v e r t e x l i s t
15

16 de f edgeConnect iv i ty ( g ) :
17 ””” Computes Edge Connect iv i ty lambda o f a g iven s imple graph .
18 − Note : s p e l l i n g lambda as lamda i s i n t e n t i o n a l .
19 g : Graph given by adjacency matrix .
20 ”””
21 i f l en ( componentsviamatrix ( g ) ) != 1 :
22 r e turn 0
23 n = g . shape [ 0 ]
24 gdash = ctdn1 ( g )
25 network = networkgraph ( gdash , [ 1 f o r i in gdash [ 0 ] ] , 0 , 1)
26 network . s = 0
27 network . t = n−1
28 lamda = network . maxflow ( )
29 f o r s in range (0 , n−2) :
30 network . f l ow r e s e t ( )
31 network . s = s
32 network . t = s+1
33 mf = network . maxflow ( )
34 lamda = min(mf , lamda ) #lambda
35 r e turn lamda #lambda
36

37 #Example
38 edgeConnect iv i ty (np . array ( [ [ 0 , 1 ] , [ 1 , 0 ] ] ) #Returns 1
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A.8 Vertex Connectivity

1 de f ctdn2 ( adjmatr ix ) :
2 ””” Convert s imple graph to d i r e c t ed graph . For Vertex Connect iv i ty .
3 ”””
4 a d j l i s t 1 , v e r t e x l i s t 1 = ctdn1 ( adjmatr ix ) #Converts s imple to d i r e c t ed graph
5 vdash = [ i f o r i in v e r t e x l i s t 1 ]
6 vdashdash = [ ( i + l en ( vdash ) ) f o r i in v e r t e x l i s t 1 ]
7 edashdash = [ [ vdash [ i ] , vdashdash [ i ] ] f o r i in range ( l en ( vdash ) ) ]
8 edash = [ [ vdashdash [ edge [ 0 ] ] , vdash [ edge [ 1 ] ] ] f o r edge in a d j l i s t 1 ]
9 a d j l i s t 2 = [ i f o r i in edash ]

10 f o r i in edashdash :
11 a d j l i s t 2 . append ( i )
12 v e r t e x l i s t 2 = [ i f o r i in vdash ]
13 f o r i in vdashdash :
14 v e r t e x l i s t 2 . append ( i )
15 r e turn a d j l i s t 2 , v e r t e x l i s t 2
16

17 de f ve r t exConnec t iv i ty ( g ) :
18 ””” Computes ver tex conne c t i v i t y kappa o f a g iven s imple graph .
19 g : Graph given by adjacency matrix .
20 ”””
21 i f l en ( componentsviamatrix ( g ) ) != 1 :
22 r e turn 0
23 n = g . shape [ 0 ]
24 gdash = ctdn2 ( g )
25 network = networkgraph ( gdash , [ 1 f o r i in gdash [ 0 ] ] , 0 , 1)
26 vdash = gdash [ 1 ] [ : i n t ( l en ( gdash [ 1 ] ) /2) ]
27 vdashdash = gdash [ 1 ] [ i n t ( l en ( gdash [ 1 ] ) /2) : ]
28 kappa = len ( vdash ) − 1
29 s = −1
30 whi le s < kappa :
31 s = s + 1
32 f o r t in range ( s+1, l en ( vdash ) ) :
33 i f not ( ( [ vdashdash [ s ] , vdash [ t ] ] in gdash [ 0 ] ) or ( [ vdashdash [ t ] , vdash [ s

] ] in gdash [ 0 ] ) ) :
34 network . f l ow r e s e t ( )
35 network . s = vdashdash [ s ]
36 network . t = vdash [ t ]
37 m = network . maxflow ( )
38 i f m < kappa :
39 kappa = m
40 i f s > m:
41 r e turn kappa
42 r e turn kappa
43

44 #Example
45 ver t exConnec t iv i ty (np . array ( [ [ 0 , 1 ] , [ 1 , 0 ] ] ) #Returns 1
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A.9 Prescribed Connectivities Algorithm

1 de f genkld ( kappa , lamda , d e l t a ) :
2 ”””Generates an adjacency matrix with kappa (G) = kappa , lambda (G) = lamda ,

de l t a (G) = de l t a .
3 I f kappa = 0 then lamda = 0 .
4 kappa : Vertex conne c t i v i t y
5 lamda : Edge conne c t i v i t y
6 de l t a : Lowest degree .
7 ”””
8 i f kappa == 0 and lamda != 0 : #kappa = 0 i f f lamda = 0
9 r e turn Fa l se

10 g1e , g1v = c o n v e r t t o l i s t ( complete ( d e l t a + 1) ) #Generates a complete graph (
edge l i s t )

11 g2v = [ i + len ( g1v ) f o r i in range ( de l t a + 1) ] #Makes a copy o f v e r t i c e s and
r e l a b e l s

12 g2e = [ [ edge [ 0 ] + l en ( g1v ) , edge [ 1 ] + l en ( g1v ) ] f o r edge in g1e ] #Makes copy
o f edges and r e l a b e l s

13 kedges = [ [ g1v [ i ] , g2v [ i ] ] f o r i in range ( kappa ) ] #Jo ins kappa edges between
complete graphs

14 l e dg e s = [ ]
15 whi le l en ( l edg e s ) != ( lamda − kappa ) : #Jo ins lamda − kappa new edges between

graphs
16 f o r i in range ( kappa ) :
17 f o r j in range ( de l t a − 1) :
18 i f i != j :
19 l e dg e s . append ( [ g1v [ i ] , g2v [ j ] ] )
20 i f l en ( l edg e s ) == ( lamda − kappa ) :
21 break
22 i f l en ( l edg e s ) == ( lamda − kappa ) :
23 break
24 #combine l i s t s
25 e = g1e + g2e + kedges + l edge s
26 v = g1v + g2v
27 r e turn c onv e r t f r omad j l i s t ( e , v ) #conver t s l i s t s to adjacency matrix
28

29 #Example
30 genkld (1 , 1 , 2 ) # Returns array ( [ [ 0 , 1 , 1 , 1 , 0 , 0 ] , [ 1 , 0 , 1 , 0 , 0 , 0 ] , [ 1 , 1 , 0 ,

0 , 0 , 0 ] , [ 1 , 0 , 0 , 0 , 1 , 1 ] , [ 0 , 0 , 0 , 1 , 0 , 1 ] , [ 0 , 0 , 0 , 1 , 1 , 0 ] ] )
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