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Abstract

In this paper I will cover some methods involving fractal geometry
that are used in the analysis of DNA sequences. This paper will have
a particular focus on the identification and study of VNTRs (Variable
Number of Tandem Repeats), which are repeated sequences of nucleotides
within a DNA sequence. The ability to identify VNTRs and their location
within a DNA sequence leads to many applications, which are covered in
the conclusion. This paper will also be concerned with the identification
of other properties such as long-range power law correlations, patches
and coding/non-coding regions. The Indicator Matrix method, the DNA
walk and Detrended Fluctuation Analysis are explored, with the Indicator
Matrix Method chosen as the most effective.

1 Introduction

A DNA sequence is made up of genes and each one of these genes
contains the necessary information for the creation of different pro-
teins. However, between these genes lie vast regions of non-coding
DNA known as intergenic sequences. It has also been discovered that
genes themselves include regions not used for coding. These regions
are removed during the formation of mRNA [1] and are called in-
trons [2]. The mRNA is then used for the assembling of proteins.
The coding sequences in genes which are used during the formation
of mRNA are called exons [3].

Genes are made up of building blocks called nucleotides of which there
are four different varieties, two of which are referred to as purines and
the other two are referred to as pyrimidines. These nucleotides can be
arranged in different ways to produce three-letter sequences known
as codons [4]. Codons contain the information that specifies which
amino acid is needed at which position in a protein.
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The two purine nucleotides are adenine and thymine, and the two
pyrimidine nucleotides are cytosine and guanine. Adenine and thymine
have complimentary shapes and in the case of DNA sequences they
come in pairs that are held together by two hydrogen bonds. Thymine
is a very specialised molecule and is essentially only found in DNA,
and it is the only nucleotide to be excluded from RNA where it is
replaced by uracil [5]. However, its purine counterpart adenine is
slightly more diverse and other than being a component of DNA it
also plays a role in protein synthesis and upon undergoing chemical
reactions it has some useful derivatives including adenosine triphos-
phate, otherwise known as ATP, a common carrier of energy in living
organisms. As expected, the remaining two nucleotides, guanine and
cytosine, also pair up in DNA sequences and they are paired by three
hydrogen bonds. Much like the previous pair the purine is the more
diverse of the two molecules. Cytosine’s only uses are in DNA and
RNA, but guanine also appears in several products in the form of
crystalline guanine where it adds an iridescent effect to the product.

The number of individual nucleotides found in a DNA sequence is
staggeringly large; the longest genome discovered to date is that of
the marbled lungfish, with a total of 130 billion nucleotides found
in every strand of their DNA [6] which dwarfs the measly 3 billion
found in the human genome. However, it is worth noting that a larger
genome does not necessarily correspond to a more complex organism;
it could also correspond to a larger portion of intergenic sequences in
the DNA.

Due to the size of DNA sequences, it is to be expected that there
will be repetition amongst the nucleotides. This repetition is known
as a Variable Number of Tandem Repeats (VNTR) [7]. VNTRs can
be split into two categories: minisatellites and microsatellites. Min-
isatellites are repeated sequences of nucleotides that consist of 10-100
nucleotides. Microsatellites are repeated sequences of nucleotides
that consist of fewer than 10 nucleotides. A large portion of VN-
TRs is found in the non-coding regions of DNA which does not seem
particularly useful at first but it could grant scientists the ability
to more easily distinguish between coding and non-coding regions of
DNA and hence isolate the coding regions for further study. Further
applications, of which there are many will be outlined in the conclu-
sion. DNA sequences also have regions known as patches which are
areas that have a high density of a single nucleotide, these patches
can create illegitimate long-range correlations that are induced by
the patchy nature of the DNA sequence rather than any underlying
unifications between the nucleotides.
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It is very important for scientists to be able to identify VNTRs with
as much ease as possible. This can be achieved by introducing dif-
ferent visual methods for the representation of DNA sequences, the
most simple of which is writing down the nucleotides, represented by
their initials, in order. For example, A, A, G, T, G, G, C, T etc.
However, this method is very simple and not particularly efficient
at representing large amounts of nucleotides or at finding VNTRs.
Some more complex methods can make it significantly easier to spot
VNTRs.

In this paper I will outline the following three methods used for visual
representation of DNA sequences. The indicator matrix, the DNA
walk and Detrended Fluctuation Analysis. A brief explanation of
each of these will conclude the introduction.

The indicator matrix is a binary matrix concerned with individual
nucleotides. It is most adept at finding patches, as well as finding
VNTRs, although this becomes increasingly more difficult at larger
scales.

The DNA walk is a one-dimensional random walk, not concerned
with the individual nucleotides but rather in their classification as
either a purine or a pyrimidine. Unlike the indicator matrix the
DNA walk is less tailored towards studying VNTRs within a DNA
sequence, the main application of the DNA walk is to provide a way
of quantitatively measuring the correlations between nucleotides over
long distances along a DNA sequence [8].

Detrended Fluctuation Analysis concerns itself with neither individ-
ual nucleotides nor their classification as a purine or pyrimidine. De-
trended Fluctuation analysis was created to detect long-range cor-
relations within a patchy DNA sequence (or any other system that
exhibits patchiness), whilst avoiding the spurious detection of appar-
ent long-range correlations caused by the DNA sequence’s patchiness
[9].

2 Definitions

2.1 Fractals

As of yet, the world’s leading mathematicians are unable to agree
upon a defined definition of a fractal. However, the founding father of
fractal geometry, Benoit Mandelbrot, has a definition that he abides
by. ‘A fractal is a set for which the Hausdorff-Besicovitch dimension
strictly exceeds the topological dimension’[10].
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2.2 Topological Dimension

The topological dimension, denoted dim(X) is the dimension we come
across daily and a person without a background in mathematics will
be familiar with it. It is defined by the number of unique coordinates
needed to represent a point in space. To represent a point on a line
one coordinate is required and hence it has a topological dimension
of one. To represent a point in a cube three coordinates are required
and hence it has a topological dimension of three. It is worth noting
that calculating the topological dimension of a space, is not always
trivial, but topological spaces of this nature will not be mentioned in
this paper.

2.3 Fractal Dimension

[h]

Figure 1: An example where ε = 1

The Hausdorff-Besicovitch dimension, otherwise known as the frac-
tal dimension, is a measure of roughness and while it is calculated
computationally it is still important to understand how it is calcu-
lated. To find an object’s fractal dimension we first encompass the
object in the smallest possible square such that the objects outermost
points are touching the sides of the square. We define the length ε of
the sides of the square as equal to 1.
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Figure 2: An example where ε = 1
2

We define the number of boxes needed to encompass the object as
N(ε) and in the case of Figure 1 shown above we can see that N(ε) = 1
since there is only one box encompassing the object. We then halve
the length of each of the sides of the squares so that ε = 1

2 and it is
simple to see that for this value of epsilon N(ε) = 4 as can be observed
in Figure 2.

The halving of ε continues and we want the squares encompassing the
object to be as small as possible, so we let ε → 0. This cannot feasibly
be done by hand and so must be done by computer. Once this has
been achieved the fractal dimension is defined as,

Df = limε→0
logN(ε)

log( 1ε )
(1)

In this modern age it is not a problem to find an object’s fractal
dimension computationally, however without the help of a computer
it is an incredibly tedious task, and the nature of this dimension is
one of the reasons why fractal geometry only started its development
in recent years with the help of computers.
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Figure 3: An example where ε = 1
8 . Unlike the other examples shown in Figures

1 and 2, one can see that not all of the boxes are being used to cover the shape.

3 Long Range Power Law Correlations in DNA

A power law can be defined as the following,

f(x) = x−n (2)

Fractals, and systems with fractal-like behaviours, have two distinct
properties that show that they have a relation with power laws. These
properties are self-organisation and self-similarity. Self-organisation
is a process in which order spontaneously arises within an initially
disordered system. A self-similar object is one that is similar or iden-
tical to a smaller part of itself. Data that has come from a system
that is both self-similar and self-organised cannot be modelled by any
conventional distributions. This is because any order exhibited from
such a system is shown by correlations between different orders of
magnitude, this rules out the possibility of correlations being exhib-
ited by a conventional distribution on a set scale. Correlations of this
type are best described by power laws because of their ability to move
through different orders of magnitude [11]. We can also show that the
fractal dimension obeys a power law by the following rearrangement
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of equation (1),

Df =
logN(ε)

log( 1ε )
(3)

logN(ε) = Df × log(
1

ε
) (4)

logN(ε) = log(ε−Df ) (5)

N(ε) = ε−Df (6)

There have been several studies published about the appearances
of long-range power law correlations in DNA. Some have come to
the conclusion that DNA sequences do display long-range power law
correlations [12] whereas others have concluded the opposite [13].
After further study the following conclusion was reached. Non-coding
regions of DNA sequences display long-range power law correlations
whereas coding regions of DNA sequences do not display long-range
power law correlations. The reason for this is unclear at present.

4 Indicator Matrix

We start by defining the following,

A = Adenine G = Guanine C = Cytosine T = Thymine (7)

ζ = (A, T,C,G) (8)

From this we can define the sequence of nucleotides in DNA as the
finite sequence,

S = N× ζ (9)

Such that individual members of S can be defined as,

S = xh, xh = (x1, x2, · · · , xn), n < ∞, x ϵ ζ (10)

Where h is the position of x in the sequence and on the matrix.

The indicator function [14] is the map,

u = S × S → [0, 1] (11)

Such that,
u(xh, xk) = 1 if xh = xk (xh, xkϵS) (12)

u(xh, xk) = 0 if xh ̸= xk (xh, xkϵS) (13)

From the aforementioned equations we can see that a DNA sequence
of length n can be represented as an n × n symmetrical matrix with
binary values (0, 1)
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G C T G G A T A G A
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A

Figure 4: An example of an Indicator Matrix

A method used to further enhance the visual representation of the
indicator matrix, is as follows. When u(xh, xk) = 1 replace the 1 with
a black square when u(xh, xk) = 0 replace the 0 with a white square.

G C T G G A T A G A

G

C

T

G

G

A

T

A

G

A

Figure 5: Highlighted in red is a 5×5 minor of a 10×10 matrix, where p(n) = 11.

This is a much more useful representation of the indicator matrix
because the coloured squares are much easier to identify, especially
from distance, than ones and zeros, hence this version of the indicator
matrix allows for you to study larger portions of a DNA sequence.
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DNA sequences can be incredibly long and contain anywhere from 106

to 109 individual nucleotides, so the patterns made from the indicator
matrix are incredibly complex. However using an adaptation of the
equation (1),

Df =
1

N

N∑
n=2

log p(n)

log n
(14)

where p(n) is the average number of ones or black squares found in
an n×n minor of the N ×N matrix u(xh, xk). We can computationally
calculate the fractal dimension of the indicator matrix. An example
is given in Figure 4.

5 Analysing Data from the Indicator Matrix

T C T G T A T T T A

T

C

T

G

T

A

T

T

T

A

Figure 6: The indicator matrix of a portion of a DNA sequence with an excess
of one nucleotide.

This section will outline the meanings of some of the visual character-
istics of indicator matrices as well as look at what similarities between
different indicator matrices might mean.

As can be seen in Figures 3, 4, 5, and 6, no matter what DNA
sequence is used there will always be a constant chain of coloured
squares that start at the origin and go along the diagonal y = x. This
is because the same DNA sequence is going along both the x-axis
and the y-axis, and so for any nucleotide a distance i along the x-axis
there is a corresponding nucleotide a distance i up the y-axis, these
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two points will meet at the coordinate (i, i), which lies on the afore-
mentioned diagonal y = x. From here on out I will refer to this as the
central diagonal.

T C G C T C G C T C

T

C

G

C

T

C

G

C

T

C

G

C

G C

Figure 7: The indicator matrix of a DNA sequence that contains the VNTR T,
C, G, C. One of the diagonal patterns produced by the VNTR is highlighted in
red. It is worth noting there is an overlap in the diagonal patterns produced.

If we look at Figure 5 we can see that a large clump of coloured
squares forms around the central diagonal when patches appear in a
DNA sequence. Due to the size of DNA sequences and the patches
they contain it would be much more fruitful to study these patches
via larger indicator matrices than the one used in Figure 5. It is
worth noting that the DNA sequence used in Figure 5 is just an ex-
ample and would not be considered a patch since there aren’t enough
nucleotides.

In Figure 6 we can see that there is a microsatellite in the DNA se-
quence used. This is represented on the matrix via repeated diagonal
patterns on the central diagonal and on the diagonals parallel to it.

One study collected data on the DNA of the influenza virus A H1N1
[15] in different regions of the world. Indicator matrices were made
from the DNA of each of the viruses. The matrices displayed fractal-
like properties including a non-integer fractal dimension and self-
similarity.

The indicator matrixes for the DNA of each of the viruses could be
put into groups in which every member of a group exhibited the same
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visual characteristics. Interestingly when the fractal dimension for
each of the matrices was calculated they could all be put into groups
where each one shared the same fractal dimension up to 10−2and these
groups were very similar to those formulated from the matrix’s visual
characteristics.

An assumption could be made here that if two indicator matrixes
share similar fractal dimensions then they will also share similar visual
characteristics. Using some of the observations made about Figures
3, 4, 5, and 6 we can also conclude that the sharing of visual char-
acteristics between two matrices could include some of the following
correlations between the two DNA sequences used for creating the
matrices. Similar patches and VNTRs as well as similar placement
of the patches and VNTRs within the DNA sequences.

A second, more recent study was carried out that looked at the in-
dicator matrices of the RNA of the SARS-CoV2 coronavirus [16]. A
total of 21 samples of RNA were taken and every sample had an
indicator matrix generated. The fractal dimension of the indicator
matrices was then calculated and each of the samples had a very sim-
ilar if not identical value of Df = 1.63 ± 0.03. Upon analysing the 21
matrices some recurring patterns were noticed. This corresponds to
the conclusion drawn from the previous study on the DNA of the
influenza virus A H1N1 [17].

This conclusion is further supported when the data gathered for the
SARS-CoV2 coronavirus is compared to SARS-CoV, SARS-like and
MERS-CoV coronaviruses. When compared to the indicator matri-
ces of SARS-CoV and MERS-CoV which have a similar fractal di-
mensions of Df = 1.60 and Df = 1.63 respectively it is observed that
the three matrices share visual characteristics as expected. However
upon being compared to the coloured indicator matrices generated
from the RNA of SARS-like coronavirus which have a more signifi-
cantly different fractal dimension of Df = 1.58 ± 0.055 there were no
apparent similarities observed in the indicator matrices. Both of these
observations support the conclusion that indicator matrices of similar
fractal dimensions share visual characteristics.

6 DNA Walk

A DNA walk [18], shown in Figure 7, is defined by the two following
rules. It moves up one vertical unit u(i) = +1 if there is a pyrimidine
at a distance i along the DNA sequence. It moves down one vertical
unit u(i) = −1 if there is a purine at a distance i along the DNA
sequence.
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G C T G G A T A G A

1

2

3

4

0

Figure 8: A DNA walk of net displacement 0

The net vertical displacement of a DNA walk is defined as,

y(l) =

l∑
i=1

u(i) (15)

The question asked by researchers is whether these DNA walks dis-
play short range correlations or long-range correlations as those ob-
served in fractal phenomena. This question can be answered with the
help of Detrended Fluctuation Analysis which will be outlined in the
next section.

An important characterization of the graphs formed by DNA walks
is the square root of the mean fluctuation function about the average
displacement, denoted F (l). It is defined as the square root of the
difference between the average of the square and the square of the
average,

F (l) =

√
[∆y(l)−∆y(l)]2 =

√
[∆y(l)]2 −∆y(l)

2
(16)

although it is more commonly written in the form F 2(l)as defined
below,

F 2(l) = [∆y(l)−∆y(l)]2 = [∆y(l)]2 −∆y(l)
2

(17)

∆y(l) is defined as the difference in vertical displacement between
some start point l0 and some end point l,

∆y(l) = y(l0 + l)− y(l) (18)

The bars in equations (16) and (17) indicate an average over all pos-
sible positions l0 in the DNA sequence.
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7 Detrended Fluctuation Analysis

In order to distinguish between sequences with and without long-
range power law correlations an appropriate scaling analysis of the
correlation properties is required. The method described in this pa-
per is called Detrended Fluctuation Analysis [19]. The method is as
follows.

AA T G A T C C A G T A G G C A G A T A
-4

-3

-2

-1

0

1

Figure 9: A DNA sequence split into 5 sections of length 4. The line of best fit
is highlighted in red in each section.

First you must divide a DNA sequence of length N into N
l non-

overlapping boxes where each box contains l nucleotides. Define the
‘local trend’ of each of the boxes, as the line of best fit for the DNA
walk in that box. The net displacement of the local trend of each box
will be denoted as x(n). The detrended walk, yl(n), is defined as the
difference between the net displacement of the DNA walk of a box,
calculated using equation (15), and the net displacement of the local
trend of that same box,

yl(n) = y(n)− x(n) (19)

Then calculate the average variance about the detrended walk in each
box by using the following equation.

F 2
d (l) =

1

N

N∑
n=1

y2l (n) =
1

N

N∑
n=1

(y(n)− x(n))2 (20)

If a nucleotide sequence only has short-range correlations, then the
detrended DNA walk must have properties consistent with that of a
random walk so, Fd(l) ∼ l

1
2 , if the sequence does contain long-range

correlations, then, Fd(l) ∼ lα, where α is the critical exponent [20] and
α ̸= 1

2 . If α < 1
2 then the long-range power laws show an alteration of

different nucleotides whereas when α > 1
2 the long-range power law

correlations show a persistence of a singular nucleotide.
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If we plot the function, Fd(l) = lα on a double-logarithmic graph,
log Fd(l) = αlog l, then we get a straight line. From this it is easy to
compute the gradient of the double-logarithmic graph, find the value
of α and establish whether a nucleotide sequence exhibits long-range
power law correlations. If the sequence does you can also establish
whether those correlations show an alteration of different nucleotides
or the persistence of a singular nucleotide.

8 Conclusion

In the conclusion I will go over some of the more promising applica-
tions of the methods outlined in this paper.

Out of all of the methods outlined in this paper for identifying VN-
TRs, the indicator matrix demonstrates the most value. Detrended
Fluctuation Analysis is a useful technique for finding long-range power
law correlations, however, this is of no use in identifying VNTRs as
they occur over a shorter scale. Hence, the comparison is only be-
tween the indicator matrix and the DNA walk. The indicator matrix
is the victor in this comparison because one is able to fruitfully study
much larger portions of a DNA sequence at a time with it when com-
pared to the DNA walk. This is due to it being easier to distinguish
the 2-dimensional patterns on the matrix than the 1-dimensional pat-
terns of the DNA walk. This also means that any repeated patterns
caused by VNTRs would be easier to identify via the indicator matrix
than the DNA walk.

Studying VNTRs can yield some very useful results. Tumour cells
have reduced control over their own replication, (this includes the
replication of their DNA), because of this, large amounts of VN-
TRs may be lost or gained during each round of mitosis that occurs.
Therefore VNTRs (specifically microsatellites) analysed in primary
tissue have been routinely used in cancer diagnosis to assess tumour
progression [21].

The study of VNTRs is also beneficial in genetic linkage analysis. Mi-
crosatellites can be used as genetic markers when scanning a genome
in search of a gene responsible for a certain phenotype. This use
of microsatelites has sucesfully led scientists to the discovery of the
genes responsible for type 2 diabetes and prostate cancer [22][23].

Once the presence of a power law in a DNA sequence has been estab-
lished by the use of Detrended Fluctuation Analysis and the DNA
walk, and by borrowing methods from the modern theory of critical
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phenomena [24] we are able to quantify them with the critical expo-
nent, α. Quantification of this kind of scaling behaviour for apparently
unrelated systems allows us to recognise similarities between differ-
ent systems, leading to underlying unifications that might otherwise
have gone unnoticed [25].

It is important to remember the existence of the long-range power
law correlations and the underlying unifications they suggest. As
regardless of the cause of the correlations their presence in non-coding
regions of DNA sequences and their absence in coding regions of DNA
sequences must be accounted for by future explanations of global
properties in gene organisation and evolution [26].
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